stringtranslate.com

Ácido de Lewis quiral

Los ácidos de Lewis quirales (CLA) son un tipo de catalizador ácido de Lewis . Estos ácidos afectan la quiralidad del sustrato cuando reaccionan con él. En este tipo de reacciones, la síntesis favorece la formación de un enantiómero o diastereómero específico . El método es una reacción de síntesis asimétrica enantioselectiva . Dado que afectan la quiralidad, producen productos ópticamente activos a partir de materiales de partida mixtos o ópticamente inactivos. Este tipo de formación preferencial de un enantiómero o diastereómero sobre el otro se conoce formalmente como inducción asimétrica . En este tipo de ácido de Lewis, el átomo aceptor de electrones suele ser un metal, como indio , zinc , litio , aluminio , titanio o boro . Los ligandos alteradores quirales empleados para sintetizar estos ácidos a menudo tienen múltiples sitios básicos de Lewis (a menudo una estructura diol o dinitrógeno) que permiten la formación de una estructura de anillo que involucra al átomo metálico. [1] [2]

Los ácidos aquirales de Lewis se han utilizado durante décadas para promover la síntesis de mezclas racémicas en innumerables reacciones diferentes. Desde la década de 1960, los químicos han utilizado ácidos quirales de Lewis para inducir reacciones enantioselectivas. Esto es útil cuando el producto deseado es un enantiómero específico, como es común en la síntesis de fármacos. Los tipos de reacciones comunes incluyen reacciones de Diels-Alder , la reacción eno , reacciones de cicloadición [2+2] , hidrocianación de aldehídos y, más notablemente, epoxidaciones de Sharpless . [3]

Teoría

Figura 2. Arriba: Diagrama de energía libre de Gibbs que muestra una reacción de un solo paso en la que un ácido de Lewis aquiral cataliza la formación de una mezcla racémica de productos a partir de materiales de partida racémicos. Abajo: Diagrama de energía libre de Gibbs que muestra la misma reacción cuando se utiliza un ácido de Lewis quiral como catalizador.

La enantioselectividad de los CLA se deriva de su capacidad para perturbar la barrera de energía libre junto con la vía coordinada de reacción que conduce al enantiómero R o S. Los diastereómeros y enantiómeros en estado fundamental tienen la misma energía en el estado fundamental, y cuando reaccionan con un ácido de Lewis aquiral, sus intermedios diastereoméricos, estados de transición y productos también tienen la misma energía. Esto conduce a la producción de mezclas racémicas . Sin embargo, cuando se utiliza un CLA en la misma reacción, la barrera energética de formación de un diastereómero es menor que la de otro; la reacción está bajo control cinético . Si la diferencia en las barreras energéticas entre los estados de transición diastereoméricos es de magnitud suficiente, entonces se observa un alto exceso enantiomérico de un isómero. [4]

Síntesis asimétrica

Reacción de Diels-Alder

Las reacciones de Diels-Alder ocurren entre un dieno conjugado y un alqueno (comúnmente conocido como dienófilo ). Este proceso de cicloadición permite la formación estereoselectiva de anillos de ciclohexeno capaces de poseer hasta cuatro centros estereogénicos contiguos.

Las reacciones de Diels-Alder pueden conducir a la formación de una variedad de isómeros estructurales y estereoisómeros. La teoría de los orbitales moleculares considera que se favorece el estado de transición endo, en lugar del estado de transición exo (regla de la suma endo). Además, se ha postulado que el aumento de las interacciones orbitales secundarias es la fuente de una endodiastereoselección mejorada.

Normalmente, los CLA se emplean para activar el dienófilo. Un catalizador de CLA típico se deriva de un centro de Mg 2+ que se vuelve quiral mediante la unión de un éster de binol -fosfato. Los CLA se han aplicado a varias reacciones intramoleculares de Diels-Alder. [5]

Un complejo derivado del cloruro de dietilaluminio y un ligando de biarilo "abovedado" debajo cataliza la reacción enantioselectiva de Diels-Alder entre ciclopentadieno y metacroleína. El ligando quiral se recupera cuantitativamente mediante cromatografía en gel de sílice . [6]

El complejo quiral (aciloxi) borano (CAB) es eficaz para catalizar varias reacciones de aldehído Diels-Alder. Los experimentos espectroscópicos de RMN han indicado una estrecha proximidad entre el aldehído y el anillo arilo. Se ha sugerido que el apilamiento de Pi entre el grupo arilo y el aldehído es una característica organizativa que imparte una alta enantioselectividad a la cicloadición. [7]

El ácido de Lewis quiral asistido por ácido de Bronsted (BLA) cataliza varias reacciones de cicloadición de dieno-aldehído. [8]

Reacción aldólica

En la reacción aldólica , la diastereoselectividad del producto suele estar dictada por la geometría del enolato. El modelo de Zimmerman-Traxler predice que el enolato Z dará productos syn y que los enolatos E darán productos anti . Las reacciones catalizadas por CLA a base de estaño permiten que los productos se desvíen de este patrón. [9]

Las estructuras de transición para reacciones con los enantiómeros del catalizador R y S son:

Reacción de Baylis-Hillman

La reacción de Baylis-Hillman es una ruta para la formación de enlaces CC entre un carbonilo alfa, beta-insaturado y un aldehído , que requiere un catalizador nucleofílico , generalmente una amina terciaria , para una adición y eliminación de tipo Michael. La estereoselectividad de estas reacciones suele ser escasa. Se ha demostrado que los CLA que contienen lantano (III) mejoran la estereoselectividad. De manera similar, también se puede usar una amina quiral para lograr estereoselectividad. [10]

El producto obtenido por la reacción utilizando el catalizador quiral se obtuvo con buen rendimiento y excelente enantioselectividad.

Ene reacción

Los ácidos quirales de Lewis han demostrado ser útiles en la reacción ene . Cuando es catalizada por un ácido de Lewis aquiral, la reacción normalmente proporciona una buena diastereoselectividad. [11]

Se ha observado una buena enantioselectividad cuando se utiliza un catalizador ácido de Lewis quiral.

Se cree que la enantioselectividad se debe a las interacciones estéricas entre el grupo metilo y fenilo , lo que hace que la estructura de transición del producto iso sea considerablemente más favorable.

Ácidos aquirales de Lewis en síntesis estereoselectiva.

En algunos casos, un ácido de Lewis aquiral puede proporcionar una buena estereoselectividad. Kimura et al. demostró el acoplamiento regio y diastereoselectivo de 1,3- dienos con aldehídos utilizando un catalizador de níquel . [12]

Referencias

  1. ^ Yamamoto, Hisashi (2007). Reactivos ácidos de Lewis: un enfoque práctico. Knovel. ISBN 978-1-60119-442-8. OCLC  315587750.
  2. ^ Corey, EJ; Imwinkelried, René; Pikul, Estanislao; Xiang, Yi Bin (julio de 1989). "Prácticas reacciones enantioselectivas de Diels-Alder y aldólicas utilizando un nuevo sistema de controlador quiral". Revista de la Sociedad Química Estadounidense . 111 (14): 5493–5495. doi :10.1021/ja00196a081. ISSN  0002-7863.
  3. ^ Narasaka, Koichi (1991). "Ácidos quirales de Lewis en reacciones catalíticas asimétricas". Síntesis . 1991 (1): 1–11. doi :10.1055/s-1991-26364. ISSN  0039-7881.
  4. ^ Morrison, JD, Mosher, HS (1971). Reacciones Orgánicas Asimétricas . Prentice-Hall, Inc. ISBN 978-0-13-049551-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. ^ Sha, Qiang; Deng, Yongming; Doyle, Michael P. (2015). "El futuro de la catálisis por ácidos quirales de Lewis". Ácidos quirales de Lewis . Temas de Química Organometálica. vol. 62, págs. 1-25. doi :10.1007/3418_2015_141. ISBN 978-3-319-70804-1.
  6. ^ Bao, Jianming; Wulff, William D.; Rheingold, Arnold L. (mayo de 1993). "Biarilos abovedados como ligandos quirales para reacciones catalíticas asimétricas de Diels-Alder". Revista de la Sociedad Química Estadounidense . 115 (9): 3814–3815. doi :10.1021/ja00062a073. ISSN  0002-7863.
  7. ^ Ishihara, Kazuaki; Gao, Qingzhi; Yamamoto, Hisashi (noviembre de 1993). "Estudios mecanicistas de una reacción de Diels-Alder asimétrica catalizada por CAB". Revista de la Sociedad Química Estadounidense . 115 (22): 10412–10413. doi :10.1021/ja00075a088. ISSN  0002-7863.
  8. ^ Ishihara, Kazuaki; Yamamoto, Hisashi (febrero de 1994). "Catalizador de ácido de Lewis quiral (BLA) asistido por ácido de Bronsted para la reacción asimétrica de Diels-Alder". Revista de la Sociedad Química Estadounidense . 116 (4): 1561-1562. doi :10.1021/ja00083a048. ISSN  0002-7863.
  9. ^ Kobayashi, Shū; Horibe, Mineko (septiembre de 1997). "Síntesis controlada por ácido de Lewis quiral (síntesis de CLAC): los ácidos de Lewis quirales influyen en el curso de la reacción en reacciones aldólicas asimétricas para la síntesis de derivados enantioméricos de dihidroxitioéster en presencia de diaminas quirales derivadas de L-prolina". Química: una revista europea . 3 (9): 1472-1481. doi :10.1002/chem.19970030914. ISSN  0947-6539.
  10. ^ Yang, Kung-Shuo; Lee, Wei-Der; Pan, Jia-Fu; Chen, Kwunmin (febrero de 2003). "Reacciones asimétricas de Baylis-Hillman catalizadas por ácido de Lewis quirales". La Revista de Química Orgánica . 68 (3): 915–919. doi :10.1021/jo026318m. ISSN  0022-3263. PMID  12558416.
  11. ^ Yang, Dan; Yang, Min; Zhu, Nian-Yong (octubre de 2003). "Reacciones de carbonilo intramoleculares enantioselectivas catalizadas por ácido de Lewis quirales de ésteres α-ceto insaturados". Cartas Orgánicas . 5 (20): 3749–3752. doi :10.1021/ol035486d. ISSN  1523-7060. PMID  14507221.
  12. ^ Kimura, Masanari; Ezoe, Akihiro; Mori, Masahiko; Iwata, Keisuke; Tamaru, Yoshinao (julio de 2006). "Homoalilación de aldehídos con 1,3-dienos catalizada por níquel regio y estereoselectiva". Revista de la Sociedad Química Estadounidense . 128 (26): 8559–8568. doi :10.1021/ja0608904. ISSN  0002-7863. PMID  16802822.