stringtranslate.com

Agricultura

La agricultura abarca la producción de cultivos y ganado , la acuicultura y la silvicultura para productos alimenticios y no alimenticios. [1] La agricultura fue un factor clave en el surgimiento de la civilización humana sedentaria , mediante la cual la cría de especies domesticadas creó excedentes de alimentos que permitieron a las personas vivir en ciudades. Si bien los humanos comenzaron a recolectar granos hace al menos 105.000 años, los agricultores nacientes solo comenzaron a plantarlos hace unos 11.500 años. Las ovejas, cabras, cerdos y ganado fueron domesticados hace unos 10.000 años. Las plantas se cultivaron de forma independiente en al menos 11 regiones del mundo. En el siglo XX, la agricultura industrial basada en monocultivos a gran escala llegó a dominar la producción agrícola.

A partir de 2021 , las pequeñas granjas producen alrededor de un tercio de los alimentos del mundo, pero prevalecen las granjas grandes. [2] El 1% más grande de las granjas del mundo tiene más de 50 hectáreas (120 acres) y opera más del 70% de las tierras agrícolas del mundo. [2] Casi el 40% de las tierras agrícolas se encuentran en granjas de más de 1000 hectáreas (2500 acres). [2] Sin embargo, cinco de cada seis granjas del mundo constan de menos de 2 hectáreas (4,9 acres) y ocupan solo alrededor del 12% de todas las tierras agrícolas. [2] Las granjas y la agricultura influyen en gran medida en la economía rural y dan forma en gran medida a la sociedad rural , afectando tanto a la fuerza laboral agrícola directa como a las empresas más amplias que respaldan a las granjas y las poblaciones agrícolas.

Los principales productos agrícolas pueden agruparse en general en alimentos , fibras , combustibles y materias primas (como el caucho ). Las clases de alimentos incluyen cereales ( granos ), verduras , frutas , aceites de cocina , carne , leche , huevos y hongos . La producción agrícola mundial asciende aproximadamente a 11 mil millones de toneladas de alimentos, [3] 32 millones de toneladas de fibras naturales [4] y 4 mil millones de m 3 de madera. [5] Sin embargo, alrededor del 14% de los alimentos del mundo se pierden en la producción antes de llegar al nivel minorista. [6]

La agronomía moderna , el fitomejoramiento , los agroquímicos como los pesticidas y fertilizantes y los avances tecnológicos han aumentado considerablemente el rendimiento de los cultivos , pero también han contribuido a causar daños ecológicos y ambientales . La crianza selectiva y las prácticas modernas en la cría de animales han aumentado de manera similar la producción de carne, pero han suscitado preocupaciones sobre el bienestar animal y el daño ambiental. Los problemas ambientales incluyen contribuciones al cambio climático , el agotamiento de los acuíferos , la deforestación , la resistencia a los antibióticos y otra contaminación agrícola . La agricultura es a la vez causa y sensible a la degradación ambiental , como la pérdida de biodiversidad , la desertificación , la degradación del suelo y el cambio climático , todos los cuales pueden causar disminuciones en el rendimiento de los cultivos. Los organismos genéticamente modificados se utilizan ampliamente, aunque algunos países los prohíben .

Etimología y alcance

Aventando grano en Etiopía.

La palabra agricultura es una adaptación del inglés medio tardío del latín agricultūra , de ager 'campo' y cultūra ' cultivo ' o 'crecimiento'. [7] Si bien la agricultura generalmente se refiere a las actividades humanas, ciertas especies de hormigas , [8] [9] termitas y escarabajos han estado cultivando cultivos durante hasta 60 millones de años. [10] La agricultura se define con distintos alcances, en su sentido más amplio utilizando recursos naturales para "producir productos que mantienen la vida, incluidos alimentos, fibras, productos forestales, cultivos hortícolas y sus servicios relacionados". [11] Así definida, incluye la agricultura arable , la horticultura, la ganadería y la silvicultura , pero en la práctica la horticultura y la silvicultura a menudo se excluyen. [11] También puede descomponerse ampliamente en agricultura vegetal , que se refiere al cultivo de plantas útiles, [12] y agricultura animal , la producción de animales agrícolas. [13]

Historia

  Centros de origen , según los numeró Nikolai Vavilov en la década de 1930.
   El área 3 ya no se reconoce como centro de origen
[14] [15]

Orígenes

El desarrollo de la agricultura permitió que la población humana creciera muchas veces más de lo que podía mantenerse mediante la caza y la recolección . [16] La agricultura comenzó de forma independiente en diferentes partes del mundo, [17] e incluyó una amplia gama de taxones , en al menos 11 centros de origen separados . [14] Los granos silvestres se recolectaron y consumieron desde hace al menos 105.000 años. [18] En el Levante Paleolítico, hace 23.000 años, se ha observado el cultivo de cereales de escanda , cebada y avena cerca del mar de Galilea. [19] [20] El arroz fue domesticado en China entre 11.500 y 6.200 a. C. con el cultivo más antiguo conocido de 5.700 a. C., [21] seguido por el mung , la soja y las judías azuki . Las ovejas fueron domesticadas en Mesopotamia hace entre 13.000 y 11.000 años. [22] El ganado fue domesticado a partir de los uros salvajes en las áreas de la actual Turquía y Pakistán hace unos 10.500 años. [23] La producción porcina surgió en Eurasia, incluyendo Europa, Asia Oriental y el Sudoeste Asiático, [24] donde los jabalíes fueron domesticados por primera vez hace unos 10.500 años. [25] En los Andes de Sudamérica, la papa fue domesticada hace entre 10.000 y 7.000 años, junto con los frijoles, la coca , las llamas , las alpacas y los conejillos de indias . La caña de azúcar y algunas hortalizas de raíz fueron domesticadas en Nueva Guinea hace unos 9.000 años. El sorgo fue domesticado en la región del Sahel de África hace 7.000 años. El algodón fue domesticado en Perú hace 5.600 años, [26] y fue domesticado independientemente en Eurasia. En Mesoamérica , el teosinte silvestre se utilizó para producir maíz hace entre 10.000 y 6.000 años. [27] [28] [29] El caballo fue domesticado en las estepas euroasiáticas alrededor del 3500 a. C. [30] Los académicos han ofrecido múltiples hipótesis para explicar los orígenes históricos de la agricultura. Los estudios de la transición de la agricultura de cazadores a recolectoresLas sociedades agrícolas indican un período inicial de intensificación y creciente sedentarismo ; ejemplos de ello son la cultura natufiense en el Levante y el Neolítico chino temprano en China. Luego, se empezaron a plantar bosques silvestres que anteriormente se habían cosechado y gradualmente se fueron domesticando. [31] [32] [33]

Civilizaciones

Mapa del mundo que muestra los centros aproximados de origen de la agricultura y su difusión en la prehistoria. [34] Los estudios de ADN han demostrado que la agricultura fue introducida en Europa por la expansión de los primeros agricultores de Anatolia hace unos 9.000 años. [35]

En Eurasia, los sumerios comenzaron a vivir en aldeas alrededor del 8000 a. C., dependiendo de los ríos Tigris y Éufrates y de un sistema de canales para el riego. Los arados aparecen en pictogramas alrededor del 3000 a. C.; los arados para semillas alrededor del 2300 a. C. Los agricultores cultivaban trigo, cebada, verduras como lentejas y cebollas, y frutas como dátiles, uvas e higos. [36] La agricultura del antiguo Egipto dependía del río Nilo y sus inundaciones estacionales. La agricultura comenzó en el período predinástico a fines del Paleolítico , después del 10 000 a. C. Los cultivos alimentarios básicos eran granos como el trigo y la cebada, junto con cultivos industriales como el lino y el papiro . [37] [38] En la India , el trigo, la cebada y el azufaifo fueron domesticados hacia el 9000 a. C., seguidos pronto por las ovejas y las cabras. [39] El ganado vacuno, las ovejas y las cabras fueron domesticadas en la cultura Mehrgarh entre el 8000 y el 6000 a. C. [40] [41] [42] El algodón se cultivaba entre el quinto y cuarto milenio a. C. [43] La evidencia arqueológica indica un arado tirado por animales del 2500 a. C. en la civilización del valle del Indo . [44]

En China, desde el siglo V a. C., había un sistema de graneros a nivel nacional y un cultivo de seda muy extendido . [45] Los molinos de grano accionados por agua estaban en uso en el siglo I a. C., [46] seguidos por el riego. [47] A fines del siglo II, se habían desarrollado arados pesados ​​​​con rejas de hierro y vertederas . [48] [49] Estos se extendieron hacia el oeste a través de Eurasia. [50] El arroz asiático fue domesticado hace 8200-13 500 años, dependiendo de la estimación del reloj molecular que se use [51] - en el río Perla en el sur de China con un solo origen genético del arroz salvaje Oryza rufipogon . [52] En Grecia y Roma , los principales cereales eran el trigo, el escanda y la cebada, junto con verduras como guisantes, frijoles y aceitunas. Las ovejas y las cabras se criaban principalmente para productos lácteos. [53] [54]

Escenas agrícolas de trilla , almacenamiento de grano, recolección con hoces , excavación, tala de árboles y arado del antiguo Egipto . Tumba de Nakht , siglo XV a. C.

En América, los cultivos domesticados en Mesoamérica (aparte del teosinte) incluyen calabaza, frijoles y cacao . [55] El cacao fue domesticado por los Mayo Chinchipe del alto Amazonas alrededor del 3000 a. C. [56] El pavo probablemente fue domesticado en México o el suroeste de Estados Unidos. [57] Los aztecas desarrollaron sistemas de irrigación, formaron laderas en terrazas , fertilizaron su suelo y desarrollaron chinampas o islas artificiales. Los mayas utilizaron extensos sistemas de canales y campos elevados para cultivar pantanos desde el 400 a. C. [58] [59] [60] [61] [62] En América del Sur, la agricultura puede haber comenzado alrededor del 9000 a. C. con la domesticación de la calabaza (Cucurbita) y otras plantas. [63] La coca fue domesticada en los Andes, al igual que el maní, el tomate, el tabaco y la piña . [55] El algodón fue domesticado en Perú hacia el 3600 a. C. [64] Allí se domesticaron animales como llamas , alpacas y conejillos de indias . [65] En América del Norte , los pueblos indígenas del Este domesticaron cultivos como el girasol , el tabaco, [66] la calabaza y el Chenopodium . [67] [68] Se cosecharon alimentos silvestres como el arroz silvestre y el azúcar de arce . [69] La fresa domesticada es un híbrido de una especie chilena y una norteamericana, desarrollada mediante la cría en Europa y América del Norte. [70] Los pueblos indígenas del suroeste y del noroeste del Pacífico practicaban la jardinería forestal y la agricultura con palos de fuego . Los nativos controlaban el fuego a escala regional para crear una ecología de fuego de baja intensidad que sustentaba una agricultura de baja densidad en rotación suelta; una especie de permacultura "salvaje" . [71] [72] [73] [74] En América del Norte se desarrolló un sistema de plantación complementaria llamado las Tres Hermanas . Los tres cultivos eran la calabaza de invierno , el maíz y los frijoles trepadores. [75] [76]

Los aborígenes australianos , que durante mucho tiempo se creyó que eran cazadores-recolectores nómadas , practicaban la quema sistemática, posiblemente para mejorar la productividad natural en la agricultura con palos para hacer fuego. [77] Los académicos han señalado que los cazadores-recolectores necesitan un entorno productivo para apoyar la recolección sin cultivo. Debido a que los bosques de Nueva Guinea tienen pocas plantas alimenticias, los primeros humanos pueden haber utilizado la "quema selectiva" para aumentar la productividad de los árboles frutales silvestres karuka para apoyar el estilo de vida de los cazadores-recolectores. [78]

Los gunditjmara y otros grupos desarrollaron sistemas de cría de anguilas y captura de peces hace unos 5.000 años. [79] Hay evidencia de "intensificación" en todo el continente durante ese período. [80] En dos regiones de Australia, la costa centro-occidental y la zona central-oriental, los primeros agricultores cultivaban ñame, mijo nativo y cebollas silvestres, posiblemente en asentamientos permanentes. [33] [81]

Revolución

Calendario agrícola, c.  1470 , de un manuscrito de Pietro de Crescenzi

En la Edad Media , en comparación con el período romano , la agricultura en Europa occidental se centró más en la autosuficiencia . La población agrícola bajo el feudalismo estaba organizada típicamente en señoríos que consistían en varios cientos o más acres de tierra presididos por un señor del señorío con una iglesia católica romana y un sacerdote. [82]

Gracias al intercambio con Al-Andalus donde se estaba desarrollando la Revolución Agrícola Árabe , la agricultura europea se transformó, con la mejora de las técnicas y la difusión de plantas de cultivo, incluyendo la introducción del azúcar, el arroz, el algodón y los árboles frutales (como la naranja). [83]

Después de 1492, el intercambio colombino trajo cultivos del Nuevo Mundo, como maíz, patatas, tomates, batatas y mandioca a Europa, y cultivos del Viejo Mundo, como trigo, cebada, arroz y nabos , y ganado (incluidos caballos, vacas, ovejas y cabras) a las Américas. [84]

El riego , la rotación de cultivos y los fertilizantes avanzaron a partir del siglo XVII con la Revolución Agrícola Británica , lo que permitió que la población mundial aumentara significativamente. Desde 1900, la agricultura en las naciones desarrolladas, y en menor medida en el mundo en desarrollo, ha experimentado grandes aumentos en la productividad a medida que la mecanización reemplaza el trabajo humano, y con la ayuda de fertilizantes sintéticos , pesticidas y cría selectiva . El método Haber-Bosch permitió la síntesis de fertilizantes de nitrato de amonio a escala industrial, lo que aumentó en gran medida el rendimiento de los cultivos y sostuvo un mayor aumento de la población mundial. [85] [86]

La agricultura moderna ha planteado o enfrentado problemas ecológicos, políticos y económicos, incluyendo la contaminación del agua , los biocombustibles , los organismos genéticamente modificados , los aranceles y los subsidios agrícolas , lo que ha llevado a enfoques alternativos como el movimiento orgánico . [87] [88] Las prácticas agrícolas insostenibles en América del Norte llevaron al Dust Bowl de la década de 1930. [89]

Tipos

Las manadas de renos constituyen la base de la agricultura pastoral de varios pueblos del Ártico y del Subártico.
Cosecha de trigo con una cosechadora acompañada de un tractor y un remolque

El pastoreo implica el manejo de animales domésticos. En el pastoreo nómada , los rebaños de ganado se desplazan de un lugar a otro en busca de pastos, forraje y agua. Este tipo de agricultura se practica en las regiones áridas y semiáridas del Sahara , Asia Central y algunas partes de la India. [90]

Esparcimiento de estiércol a mano en Zambia

En la agricultura migratoria , se desbroza una pequeña zona de bosque cortando y quemando los árboles. La tierra desbrozada se utiliza para el cultivo de cosechas durante unos años hasta que el suelo se vuelve demasiado infértil y se abandona la zona. Se selecciona otra parcela de tierra y se repite el proceso. Este tipo de agricultura se practica principalmente en zonas con abundantes precipitaciones donde el bosque se regenera rápidamente. Esta práctica se utiliza en el noreste de la India, el sudeste asiático y la cuenca del Amazonas. [91]

La agricultura de subsistencia se practica para satisfacer únicamente las necesidades familiares o locales, y queda poco para transportar a otros lugares. Se practica de forma intensiva en Asia monzónica y el sudeste asiático. [92] Se estima que en 2018 trabajaban 2500 millones de agricultores de subsistencia, que cultivaban alrededor del 60% de las tierras cultivables del planeta . [93]

La agricultura intensiva es un cultivo que maximiza la productividad, con una baja tasa de barbecho y un alto uso de insumos (agua, fertilizantes, pesticidas y automatización). Se practica principalmente en los países desarrollados. [94] [95]

Agricultura contemporánea

Estado

Idoneidad de las tierras para la agricultura en todo el mundo (Departamento de Agricultura de Estados Unidos, 1998)
Tendencias recientes del empleo en la agricultura (incluida la silvicultura y la pesca) por región

A partir del siglo XX, la agricultura intensiva aumentó la productividad de los cultivos. Sustituyó la mano de obra por fertilizantes y pesticidas sintéticos, pero provocó un aumento de la contaminación del agua y a menudo implicó subsidios agrícolas. La degradación del suelo y enfermedades como la roya del tallo son preocupaciones importantes a nivel mundial; [96] aproximadamente el 40% de las tierras agrícolas del mundo están gravemente degradadas. [97] [98] En los últimos años ha habido una reacción contra los efectos ambientales de la agricultura convencional, lo que resultó en los movimientos de agricultura orgánica , regenerativa y sostenible . [87] [99] Una de las principales fuerzas detrás de este movimiento ha sido la Unión Europea , que certificó por primera vez los alimentos orgánicos en 1991 y comenzó la reforma de su Política Agrícola Común (PAC) en 2005 para eliminar gradualmente los subsidios agrícolas vinculados a los productos básicos, [100] también conocido como desacoplamiento . El crecimiento de la agricultura orgánica ha renovado la investigación en tecnologías alternativas como el manejo integrado de plagas , la cría selectiva, [101] y la agricultura de ambiente controlado . [102] [103] Existen preocupaciones acerca del menor rendimiento asociado con la agricultura orgánica y su impacto en la seguridad alimentaria mundial . [104] Los recientes desarrollos tecnológicos dominantes incluyen alimentos genéticamente modificados . [105]

Evolución de la producción agrícola de China en dólares estadounidenses de 2015 desde 1961

En 2015, la producción agrícola de China era la mayor del mundo, seguida por la de la Unión Europea, India y Estados Unidos. [106] Los economistas miden la productividad total de los factores de la agricultura, según la cual la agricultura en Estados Unidos es aproximadamente 1,7 veces más productiva que en 1948. [107]

En 2021, la agricultura empleaba a 873 millones de personas, o el 27% de la fuerza laboral mundial, en comparación con 1.027 millones (o el 40%) en 2000. La participación de la agricultura en el PIB mundial se mantuvo estable en alrededor del 4% desde 2000 hasta 2023. [108]

A pesar de los aumentos en la producción y productividad agrícola, [109] entre 702 y 828 millones de personas se vieron afectadas por el hambre en 2021. [110] La inseguridad alimentaria y la malnutrición pueden ser el resultado de conflictos, fenómenos climáticos extremos y variabilidad y oscilaciones económicas. [109] También pueden ser causadas por las características estructurales de un país, como el nivel de ingresos y la dotación de recursos naturales, así como su economía política. [109]

El uso de pesticidas en la agricultura aumentó un 62% entre 2000 y 2021, y en 2021 la mitad de ese uso se produjo en las Américas. [108]

El Fondo Internacional de Desarrollo Agrícola sostiene que un aumento de la agricultura en pequeña escala puede ser parte de la solución a las preocupaciones sobre los precios de los alimentos y la seguridad alimentaria en general , dada la experiencia favorable de Vietnam. [111]

Personal

Empleo mundial en agricultura, silvicultura y pesca en 2021

La agricultura genera aproximadamente una cuarta parte de todo el empleo mundial, más de la mitad en el África subsahariana y casi el 60 por ciento en los países de bajos ingresos. [112] A medida que los países se desarrollan, otros empleos históricamente han alejado a los trabajadores de la agricultura, y las innovaciones que ahorran mano de obra aumentan la productividad agrícola al reducir los requisitos de mano de obra por unidad de producción. [113] [114] [115] Con el tiempo, una combinación de tendencias de oferta y demanda de mano de obra ha reducido la proporción de la población empleada en la agricultura. [116] [117]

Según la teoría de los tres sectores , la proporción de personas que trabajan en la agricultura (barra dura izquierda en cada grupo, verde) disminuye a medida que la economía se vuelve más desarrollada.

En Europa, durante el siglo XVI, entre el 55 y el 75% de la población se dedicaba a la agricultura; en el siglo XIX, esta proporción había descendido a entre el 35 y el 65%. [118] En los mismos países, hoy en día, la cifra es inferior al 10%. [119] A principios del siglo XXI, alrededor de mil millones de personas, o más de un tercio de la fuerza laboral disponible, trabajaban en la agricultura. Esto representa aproximadamente el 70% del empleo infantil mundial y, en muchos países, el mayor porcentaje de mujeres de cualquier industria. [120] El sector de servicios superó al sector agrícola como el mayor empleador mundial en 2007. [121]

En muchos países desarrollados, los inmigrantes ayudan a cubrir la escasez de mano de obra en actividades agrícolas de alto valor que son difíciles de mecanizar. [122] Los trabajadores agrícolas extranjeros, principalmente de Europa del Este, el norte de África y el sur de Asia, constituían alrededor de un tercio de la fuerza laboral agrícola asalariada en España, Italia, Grecia y Portugal en 2013. [123] [124] [125] [126] En los Estados Unidos de América, más de la mitad de todos los trabajadores agrícolas contratados (aproximadamente 450.000 trabajadores) eran inmigrantes en 2019, aunque el número de nuevos inmigrantes que llegan al país para trabajar en la agricultura ha disminuido en un 75 por ciento en los últimos años y el aumento de los salarios indica que esto ha provocado una importante escasez de mano de obra en las granjas estadounidenses. [127] [128]

Mujeres en la agricultura

En todo el mundo, las mujeres constituyen una gran proporción de la población empleada en la agricultura. [129] Esta proporción está creciendo en todas las regiones en desarrollo, excepto en Asia oriental y sudoriental, donde las mujeres ya representan alrededor del 50 por ciento de la fuerza laboral agrícola. [129] Las mujeres representan el 47 por ciento de la fuerza laboral agrícola en África subsahariana, una tasa que no ha cambiado significativamente en las últimas décadas. [129] Sin embargo, la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) postula que los roles y responsabilidades de las mujeres en la agricultura pueden estar cambiando, por ejemplo, de agricultura de subsistencia a empleo asalariado, y de miembros contribuyentes del hogar a productoras primarias en el contexto de la emigración masculina. [129]

En general, las mujeres representan una mayor proporción del empleo agrícola en los niveles más bajos de desarrollo económico, ya que la educación inadecuada, el acceso limitado a la infraestructura básica y a los mercados, la elevada carga de trabajo no remunerado y las escasas oportunidades de empleo rural fuera de la agricultura limitan gravemente las oportunidades de las mujeres de trabajar fuera de la explotación agrícola. [130]

Las mujeres que trabajan en la producción agrícola suelen hacerlo en condiciones muy desfavorables. Suelen estar concentradas en los países más pobres, donde no hay medios de vida alternativos disponibles, y mantienen la intensidad de su trabajo en condiciones de perturbaciones climáticas y situaciones de conflicto. Las mujeres tienen menos probabilidades de participar como empresarias y agricultoras independientes y se dedican a la producción de cultivos menos lucrativos. [130]

La brecha de género en la productividad de la tierra entre las explotaciones agrícolas del mismo tamaño gestionadas por mujeres y por hombres es del 24%. En promedio, las mujeres ganan un 18,4% menos que los hombres en el empleo asalariado en la agricultura; esto significa que las mujeres reciben 82 centavos por cada dólar que ganan los hombres. Los avances han sido lentos en cerrar las brechas en el acceso de las mujeres al riego y en la propiedad del ganado también. [130]

Las mujeres que trabajan en la agricultura siguen teniendo un acceso considerablemente menor que los hombres a insumos, como semillas mejoradas, fertilizantes y equipos mecanizados. Como dato positivo, la brecha de género en el acceso a Internet móvil en los países de ingresos bajos y medios se redujo del 25% al ​​16% entre 2017 y 2021, y la brecha de género en el acceso a cuentas bancarias se redujo de 9 a 6 puntos porcentuales. Las mujeres tienen las mismas probabilidades que los hombres de adoptar nuevas tecnologías cuando se ponen en marcha los factores facilitadores necesarios y tienen igual acceso a recursos complementarios. [130]

Seguridad

Barra de protección antivuelco instalada en un tractor Fordson de mediados del siglo XX

La agricultura, en concreto la ganadería, sigue siendo una industria peligrosa y los agricultores de todo el mundo siguen corriendo un alto riesgo de sufrir lesiones relacionadas con el trabajo, enfermedades pulmonares, pérdida de audición inducida por el ruido , enfermedades de la piel, así como ciertos tipos de cáncer relacionados con el uso de productos químicos y la exposición prolongada al sol. En las granjas industrializadas , las lesiones suelen estar relacionadas con el uso de maquinaria agrícola y una causa común de lesiones agrícolas mortales en los países desarrollados son los vuelcos de tractores . [131] Los pesticidas y otros productos químicos utilizados en la agricultura pueden ser peligrosos para la salud de los trabajadores , y los trabajadores expuestos a pesticidas pueden sufrir enfermedades o tener hijos con defectos de nacimiento. [132] Como es una industria en la que las familias suelen compartir el trabajo y vivir en la propia granja, familias enteras pueden correr el riesgo de sufrir lesiones, enfermedades y muerte. [133] Las edades de 0 a 6 años pueden ser una población especialmente vulnerable en la agricultura; [134] Las causas comunes de lesiones mortales entre los trabajadores agrícolas jóvenes incluyen ahogamiento, maquinaria y accidentes de motor, incluso con vehículos todo terreno. [133] [134] [135]

La Organización Internacional del Trabajo considera que la agricultura es "uno de los sectores económicos más peligrosos" [120] . Se estima que la tasa anual de muertes relacionadas con el trabajo entre los trabajadores agrícolas es de al menos 170.000, el doble de la tasa media de otros empleos. Además, los casos de muerte, lesiones y enfermedades relacionados con las actividades agrícolas a menudo no se notifican [136] . La organización ha elaborado el Convenio sobre seguridad y salud en la agricultura, 2001 , que abarca la gama de riesgos de la ocupación agrícola, la prevención de esos riesgos y el papel que deben desempeñar las personas y las organizaciones que trabajan en la agricultura [120] .

En los Estados Unidos, el Instituto Nacional de Seguridad y Salud Ocupacional ha identificado la agricultura como un sector industrial prioritario en la Agenda Nacional de Investigación Ocupacional para identificar y proporcionar estrategias de intervención para cuestiones de salud y seguridad ocupacional. [137] [138] En la Unión Europea, la Agencia Europea para la Seguridad y la Salud en el Trabajo ha emitido directrices sobre la implementación de directivas de salud y seguridad en la agricultura, la ganadería, la horticultura y la silvicultura. [139] El Consejo de Seguridad y Salud Agrícola de Estados Unidos (ASHCA) también celebra una cumbre anual para discutir la seguridad. [140]

Producción

Valor de la producción agrícola, 2016 [141]

La producción general varía según el país, como se indica.

Sistemas de cultivo de cultivos

Cultivo migratorio de tala y quema , Tailandia

Los sistemas de cultivo varían entre las fincas dependiendo de los recursos disponibles y las limitaciones; la geografía y el clima de la finca; la política gubernamental; las presiones económicas, sociales y políticas; y la filosofía y cultura del agricultor. [142] [143]

El cultivo migratorio (o tala y quema ) es un sistema en el que se queman los bosques, liberando nutrientes para sustentar el cultivo de cultivos anuales y luego perennes durante un período de varios años. [144] Luego, la parcela se deja en barbecho para que vuelva a crecer el bosque, y el agricultor se muda a una nueva parcela, regresando después de muchos años más (10-20). Este período de barbecho se acorta si aumenta la densidad de población, lo que requiere el aporte de nutrientes (fertilizantes o estiércol ) y algún control manual de plagas . El cultivo anual es la siguiente fase de intensidad en la que no hay período de barbecho. Esto requiere aportes aún mayores de nutrientes y control de plagas. [144]

Cultivo intercalado de coco y cempasúchil

Una mayor industrialización condujo al uso de monocultivos , cuando se planta una sola variedad en una gran superficie. Debido a la baja biodiversidad , el uso de nutrientes es uniforme y las plagas tienden a acumularse, lo que requiere un mayor uso de pesticidas y fertilizantes. [143] Los cultivos múltiples , en los que se cultivan varios cultivos secuencialmente en un año, y los cultivos intercalados , cuando se cultivan varios cultivos al mismo tiempo, son otros tipos de sistemas de cultivo anual conocidos como policultivos . [144]

En los ambientes subtropicales y áridos , la época y la extensión de la agricultura pueden verse limitadas por las precipitaciones, ya sea porque no permiten múltiples cultivos anuales en un año o porque requieren riego. En todos estos ambientes se cultivan cultivos perennes (café, chocolate) y se practican sistemas como la agroforestería . En los ambientes templados , donde los ecosistemas eran predominantemente pastizales o praderas , la agricultura anual altamente productiva es el sistema agrícola dominante. [144]

Las categorías importantes de cultivos alimentarios incluyen cereales, legumbres, forrajes, frutas y verduras. [145] Las fibras naturales incluyen algodón, lana , cáñamo , seda y lino . [146] Se cultivan cultivos específicos en distintas regiones de cultivo en todo el mundo. La producción se enumera en millones de toneladas métricas, según estimaciones de la FAO . [145]

Sistemas de producción ganadera

Cerdos de cría intensiva

La ganadería es la cría y crianza de animales para obtener carne, leche, huevos o lana , y para trabajar y transportarse. [147] Los animales de trabajo , incluidos caballos, mulas , bueyes , búfalos de agua , camellos, llamas, alpacas, burros y perros, se han utilizado durante siglos para ayudar a cultivar los campos, cosechar cultivos, controlar a otros animales y transportar productos agrícolas a los compradores. [148]

Los sistemas de producción ganadera pueden definirse en función de la fuente de alimento, como basados ​​en pastizales, mixtos y sin tierra. [149] En 2010 , el 30% de la superficie de la Tierra libre de hielo y agua se utilizaba para la producción de ganado, y el sector empleaba aproximadamente a 1.300 millones de personas. Entre los años 1960 y 2000, hubo un aumento significativo de la producción ganadera, tanto en número como en peso de la carcasa, especialmente entre la carne de vacuno, los cerdos y los pollos, este último con una producción aumentada en casi un factor de 10. Los animales no cárnicos, como las vacas lecheras y los pollos productores de huevos, también mostraron aumentos significativos de producción. Se espera que las poblaciones mundiales de ganado vacuno, ovino y caprino sigan aumentando considerablemente hasta 2050. [150] La acuicultura o piscicultura, la producción de pescado para consumo humano en operaciones confinadas, es uno de los sectores de producción de alimentos de más rápido crecimiento, creciendo a un promedio del 9% anual entre 1975 y 2007. [151]

Durante la segunda mitad del siglo XX, los productores que recurrían a la crianza selectiva se centraron en la creación de razas de ganado y cruces de razas que aumentaran la producción, sin prestar la debida atención a la necesidad de preservar la diversidad genética . Esta tendencia ha provocado una disminución significativa de la diversidad genética y de los recursos entre las razas de ganado, lo que ha dado lugar a una disminución correspondiente de la resistencia a las enfermedades y de las adaptaciones locales que se encontraban anteriormente entre las razas tradicionales. [152]

Cría intensiva de pollos para carne en un gallinero

La producción ganadera basada en pastizales depende de material vegetal como matorrales , pastizales y pastos para alimentar a los animales rumiantes . Se pueden utilizar aportes de nutrientes externos, sin embargo, el estiércol se devuelve directamente a los pastizales como una fuente importante de nutrientes. Este sistema es particularmente importante en áreas donde la producción de cultivos no es factible debido al clima o al suelo, lo que representa entre 30 y 40 millones de pastores. [144] Los sistemas de producción mixtos utilizan pastizales, cultivos forrajeros y cultivos de cereales como alimento para el ganado rumiante y monogástrico (un estómago; principalmente pollos y cerdos). El estiércol generalmente se recicla en sistemas mixtos como fertilizante para cultivos. [149]

Los sistemas sin tierra dependen de alimentos provenientes de fuera de la granja, lo que representa la desvinculación de la producción agrícola y ganadera que se encuentra con mayor frecuencia en los países miembros de la Organización para la Cooperación y el Desarrollo Económicos . Los fertilizantes sintéticos se utilizan más para la producción agrícola y el uso de estiércol se convierte en un desafío, así como en una fuente de contaminación. [149] Los países industrializados utilizan estas operaciones para producir gran parte de los suministros mundiales de aves de corral y carne de cerdo. Los científicos estiman que el 75% del crecimiento de la producción ganadera entre 2003 y 2030 se producirá en operaciones de alimentación animal confinada , a veces llamadas cría industrial . Gran parte de este crecimiento está ocurriendo en países en desarrollo de Asia, con cantidades mucho menores de crecimiento en África. [150] Algunas de las prácticas utilizadas en la producción ganadera comercial, incluido el uso de hormonas de crecimiento , son controvertidas. [153]

Prácticas de producción

Cultivando un campo cultivable

La labranza es la práctica de romper el suelo con herramientas como el arado o la grada para prepararlo para la siembra, para la incorporación de nutrientes o para el control de plagas. La labranza varía en intensidad desde la convencional hasta la cero labranza . Puede mejorar la productividad al calentar el suelo, incorporar fertilizantes y controlar las malezas, pero también hace que el suelo sea más propenso a la erosión, desencadena la descomposición de la materia orgánica liberando CO 2 y reduce la abundancia y diversidad de los organismos del suelo. [154] [155]

El control de plagas incluye el manejo de malezas, insectos, ácaros y enfermedades. Se utilizan métodos químicos (pesticidas), biológicos ( biocontrol ), mecánicos (labranza) y culturales. Las prácticas culturales incluyen la rotación de cultivos, el sacrificio , los cultivos de cobertura , los cultivos intercalados, el compostaje , la evitación y la resistencia. El manejo integrado de plagas intenta utilizar todos estos métodos para mantener las poblaciones de plagas por debajo del número que causaría pérdidas económicas, y recomienda los pesticidas como último recurso. [156]

La gestión de nutrientes incluye tanto la fuente de insumos de nutrientes para la producción agrícola y ganadera como el método de uso del estiércol producido por el ganado. Los insumos de nutrientes pueden ser fertilizantes químicos inorgánicos, estiércol, abono verde , compost y minerales. [157] El uso de nutrientes de los cultivos también puede gestionarse mediante técnicas culturales como la rotación de cultivos o un período de barbecho . El estiércol se utiliza ya sea manteniendo al ganado en el lugar donde crece el cultivo forrajero, como en el pastoreo rotativo intensivo gestionado, o esparciendo formulaciones secas o líquidas de estiércol en las tierras de cultivo o los pastos . [154] [158]

Un sistema de riego de pivote central

La gestión del agua es necesaria cuando las precipitaciones son insuficientes o variables, lo que ocurre en cierta medida en la mayoría de las regiones del mundo. [144] Algunos agricultores utilizan el riego para complementar las precipitaciones. En otras zonas, como las Grandes Llanuras de los EE. UU. y Canadá, los agricultores utilizan un año de barbecho para conservar la humedad del suelo para el año siguiente. [159] Las recientes innovaciones tecnológicas en la agricultura de precisión permiten el seguimiento del estado del agua y automatizar el uso del agua, lo que conduce a una gestión más eficiente. [160] La agricultura representa el 70% del uso de agua dulce en todo el mundo. [161] Sin embargo, las tasas de extracción de agua para la agricultura varían significativamente según el nivel de ingresos. En los países menos adelantados y los países en desarrollo sin litoral, las tasas de extracción de agua para la agricultura son tan altas como el 90 por ciento de las extracciones totales de agua y alrededor del 60 por ciento en los Pequeños Estados Insulares en Desarrollo . [162]

Según un informe de 2014 del Instituto Internacional de Investigación sobre Políticas Alimentarias , las tecnologías agrícolas tendrán el mayor impacto en la producción de alimentos si se adoptan en combinación entre sí. Utilizando un modelo que evaluó cómo once tecnologías podrían afectar la productividad agrícola, la seguridad alimentaria y el comercio para 2050, el Instituto Internacional de Investigación sobre Políticas Alimentarias concluyó que el número de personas en riesgo de padecer hambre podría reducirse hasta en un 40% y los precios de los alimentos podrían reducirse casi a la mitad. [163]

El pago por servicios ecosistémicos es un método para ofrecer incentivos adicionales a los agricultores para que conserven algunos aspectos del medio ambiente. Entre las medidas se puede incluir el pago por la reforestación en las zonas situadas aguas arriba de una ciudad, con el fin de mejorar el suministro de agua dulce. [164]

Automatización agrícola

Existen diferentes definiciones de automatización agrícola y de la variedad de herramientas y tecnologías que se utilizan para automatizar la producción. Una visión es que la automatización agrícola se refiere a la navegación autónoma por robots sin intervención humana. [165] Alternativamente, se define como la realización de tareas de producción a través de dispositivos mecatrónicos móviles, autónomos y de toma de decisiones. [166] Sin embargo, la FAO considera que estas definiciones no capturan todos los aspectos y formas de automatización, como las máquinas de ordeño robóticas que son estáticas, la mayoría de las máquinas motorizadas que automatizan la realización de operaciones agrícolas y las herramientas digitales (por ejemplo, sensores) que automatizan solo el diagnóstico. [160] La FAO define la automatización agrícola como el uso de maquinaria y equipo en operaciones agrícolas para mejorar su diagnóstico, toma de decisiones o ejecución, reduciendo la monotonía del trabajo agrícola o mejorando la puntualidad, y potencialmente la precisión, de las operaciones agrícolas. [167]

La evolución tecnológica en la agricultura ha implicado un movimiento progresivo desde las herramientas manuales a la tracción animal, a la mecanización motorizada, a los equipos digitales y, finalmente, a la robótica con inteligencia artificial (IA). [167] La ​​mecanización motorizada que utiliza la potencia del motor automatiza el desempeño de las operaciones agrícolas, como el arado y el ordeño. [168] Con las tecnologías de automatización digital, también es posible automatizar el diagnóstico y la toma de decisiones de las operaciones agrícolas. [167] Por ejemplo, los robots agrícolas autónomos pueden cosechar y sembrar cultivos, mientras que los drones pueden recopilar información para ayudar a automatizar la aplicación de insumos. [160] La agricultura de precisión a menudo emplea tales tecnologías de automatización. [160] Las máquinas motorizadas se complementan cada vez más, o incluso se reemplazan, por nuevos equipos digitales que automatizan el diagnóstico y la toma de decisiones. [ 168] Un tractor convencional, por ejemplo, se puede convertir en un vehículo automatizado que le permite sembrar un campo de forma autónoma. [168]

La mecanización motorizada ha aumentado significativamente en todo el mundo en los últimos años, aunque sólo existen datos globales fiables con una amplia cobertura de países para los tractores y sólo hasta 2009. [169] África subsahariana es la única región donde la adopción de la mecanización motorizada se ha estancado en las últimas décadas. [160] [170]

Las tecnologías de automatización se utilizan cada vez más para la gestión del ganado, aunque no hay pruebas de su adopción. Las ventas mundiales de sistemas de ordeño automático han aumentado en los últimos años, pero es probable que su adopción se dé principalmente en el norte de Europa [171] y que sea casi inexistente en los países de ingresos bajos y medios. También existen máquinas de alimentación automatizadas para vacas y aves de corral, pero los datos y las pruebas sobre las tendencias de su adopción y los factores que las impulsan son igualmente escasos [172] [160] .

Medir los impactos generales de la automatización agrícola en el empleo es difícil porque requiere grandes cantidades de datos para rastrear todas las transformaciones y la reasignación asociada de trabajadores tanto en las fases iniciales como finales. [167] Si bien las tecnologías de automatización reducen las necesidades de mano de obra para las tareas recientemente automatizadas, también generan una nueva demanda de mano de obra para otras tareas, como el mantenimiento y la operación de equipos. [160] La automatización agrícola también puede estimular el empleo al permitir a los productores expandir la producción y crear otros empleos en los sistemas agroalimentarios. [173] Esto es especialmente cierto cuando ocurre en un contexto de creciente escasez de mano de obra rural, como es el caso en los países de altos ingresos y muchos países de ingresos medios. [173] Por otro lado, si se promueve de manera forzada, por ejemplo a través de subsidios gubernamentales en contextos de abundante mano de obra rural, puede conducir al desplazamiento de la mano de obra y a la caída o estancamiento de los salarios, lo que afecta particularmente a los trabajadores pobres y poco calificados. [173]

Efectos del cambio climático sobre los rendimientos

El sexto Informe de Evaluación del IPCC proyecta cambios en la humedad promedio del suelo con un calentamiento de 2,0 °C, medidos en desviaciones estándar con respecto a la línea de base de 1850 a 1900.

El cambio climático y la agricultura están interrelacionados a escala global. El cambio climático afecta a la agricultura a través de cambios en las temperaturas promedio , las precipitaciones y los fenómenos meteorológicos extremos (como tormentas y olas de calor); cambios en las plagas y enfermedades; cambios en las concentraciones atmosféricas de dióxido de carbono y ozono a nivel del suelo ; cambios en la calidad nutricional de algunos alimentos; [174] y cambios en el nivel del mar . [175] El calentamiento global ya está afectando a la agricultura, con efectos distribuidos de manera desigual en todo el mundo. [176]

En un informe de 2022, el Grupo Intergubernamental de Expertos sobre el Cambio Climático describe cómo el calentamiento inducido por el hombre ha ralentizado el crecimiento de la productividad agrícola durante los últimos 50 años en latitudes medias y bajas. [177] Las emisiones de metano han afectado negativamente al rendimiento de los cultivos al aumentar las temperaturas y las concentraciones de ozono en la superficie. [177] El calentamiento también está afectando negativamente a la calidad de los cultivos y los pastizales y a la estabilidad de las cosechas. [177] El calentamiento de los océanos ha reducido los rendimientos sostenibles de algunas poblaciones de peces silvestres, mientras que la acidificación y el calentamiento de los océanos ya han afectado a las especies acuáticas de cultivo. [177] El cambio climático probablemente aumentará el riesgo de inseguridad alimentaria para algunos grupos vulnerables, como los pobres . [178]

Alteración de cultivos y biotecnología

Mejoramiento de plantas

Cultivar de trigo tolerante a alta salinidad (izquierda) en comparación con una variedad no tolerante

La alteración de los cultivos ha sido practicada por la humanidad durante miles de años, desde el comienzo de la civilización. La alteración de los cultivos a través de prácticas de mejoramiento cambia la composición genética de una planta para desarrollar cultivos con características más beneficiosas para los humanos, por ejemplo, frutos o semillas más grandes, tolerancia a la sequía o resistencia a las plagas. Avances significativos en el mejoramiento de plantas se produjeron después del trabajo del genetista Gregor Mendel . Su trabajo sobre alelos dominantes y recesivos , aunque inicialmente ignorado en gran medida durante casi 50 años, dio a los fitomejoradores una mejor comprensión de la genética y las técnicas de mejoramiento. El mejoramiento de cultivos incluye técnicas como la selección de plantas con rasgos deseables, la autopolinización y la polinización cruzada , y técnicas moleculares que modifican genéticamente el organismo. [179]

La domesticación de plantas ha aumentado, a lo largo de los siglos, el rendimiento, mejorado la resistencia a las enfermedades y la tolerancia a la sequía , facilitado la cosecha y mejorado el sabor y el valor nutricional de las plantas de cultivo. La selección y el mejoramiento cuidadosos han tenido enormes efectos en las características de las plantas de cultivo. La selección y el mejoramiento de plantas en los años 1920 y 1930 mejoraron los pastos (pastos y trébol) en Nueva Zelanda. Los amplios esfuerzos de mutagénesis inducida por rayos X y ultravioleta (es decir, ingeniería genética primitiva) durante la década de 1950 produjeron las variedades comerciales modernas de granos como el trigo, el maíz y la cebada. [180] [181]

Plántulas en un invernadero. Así se ven cuando las plántulas crecen a partir de la cría de plantas.

La Revolución Verde popularizó el uso de la hibridación convencional para aumentar drásticamente el rendimiento mediante la creación de "variedades de alto rendimiento". Por ejemplo, el rendimiento medio del maíz en los Estados Unidos ha aumentado de alrededor de 2,5 toneladas por hectárea (t/ha) (40 bushels por acre) en 1900 a alrededor de 9,4 t/ha (150 bushels por acre) en 2001. De manera similar, el rendimiento medio mundial del trigo ha aumentado de menos de 1 t/ha en 1900 a más de 2,5 t/ha en 1990. El rendimiento medio del trigo en América del Sur es de alrededor de 2 t/ha, el de África de menos de 1 t/ha y el de Egipto y Arabia de hasta 3,5 a 4 t/ha con riego. En contraste, el rendimiento medio del trigo en países como Francia es de más de 8 t/ha. Las variaciones en los rendimientos se deben principalmente a la variación en el clima, la genética y el nivel de técnicas agrícolas intensivas (uso de fertilizantes, control químico de plagas y control del crecimiento para evitar el encamado). [182] [183] ​​[184]

Aumento de la protección de la propiedad intelectual para las invenciones agrícolas, como se refleja en el número total de patentes , modelos de utilidad y sistemas de protección equivalentes de variedades vegetales solicitados para la innovación agrícola en todo el mundo.

Las inversiones en innovación para la agricultura son a largo plazo, ya que lleva tiempo comercializar la investigación y adaptar la tecnología para satisfacer las necesidades de múltiples regiones y cumplir las directrices nacionales antes de adoptarla y plantarla en los campos de los agricultores. Por ejemplo, pasaron al menos 60 años desde la introducción de la tecnología del maíz híbrido hasta que su adopción se generalizó. [185] [186]

La innovación agrícola desarrollada para las condiciones agroecológicas específicas de una región no es fácil de transferir y utilizar en otra región con condiciones agroecológicas diferentes. En cambio, la innovación tendría que adaptarse a las condiciones específicas de esa otra región y respetar sus requisitos y directrices ambientales y de biodiversidad . Algunas de esas adaptaciones se pueden ver en el número cada vez mayor de variedades vegetales protegidas en virtud del instrumento de protección de las variedades vegetales administrado por la Unión Internacional para la Protección de las Obtenciones Vegetales (UPOV). [185]

Ingeniería genética

Las plantas de papa genéticamente modificadas (izquierda) resisten enfermedades virales que dañan a las plantas no modificadas (derecha).

Los organismos genéticamente modificados (OGM) son organismos cuyo material genético ha sido alterado mediante técnicas de ingeniería genética, generalmente conocidas como tecnología de ADN recombinante . La ingeniería genética ha ampliado los genes disponibles para que los criadores los utilicen en la creación de líneas germinales deseadas para nuevos cultivos. Mayor durabilidad, contenido nutricional, resistencia a insectos y virus y tolerancia a herbicidas son algunos de los atributos introducidos en los cultivos mediante ingeniería genética. [187] Para algunos, los cultivos OGM causan preocupaciones sobre la seguridad alimentaria y el etiquetado de los alimentos . Numerosos países han impuesto restricciones a la producción, importación o uso de alimentos y cultivos OGM. [188] El Protocolo de Bioseguridad , un tratado internacional, regula el comercio de OGM. Existe un debate en curso sobre el etiquetado de los alimentos elaborados a partir de OGM, y mientras que la UE actualmente exige que todos los alimentos OGM estén etiquetados, los EE. UU. no lo hacen. [189]

Las semillas resistentes a los herbicidas tienen un gen implantado en su genoma que permite a las plantas tolerar la exposición a herbicidas, incluido el glifosato . Estas semillas permiten al agricultor cultivar un cultivo que puede rociarse con herbicidas para controlar las malezas sin dañar el cultivo resistente. Los agricultores de todo el mundo utilizan cultivos tolerantes a los herbicidas. [190] Con el aumento del uso de cultivos tolerantes a los herbicidas, viene un aumento en el uso de herbicidas en aerosol a base de glifosato. En algunas áreas se han desarrollado malezas resistentes al glifosato, lo que ha hecho que los agricultores cambien a otros herbicidas. [191] [192] Algunos estudios también vinculan el uso generalizado de glifosato con deficiencias de hierro en algunos cultivos, lo que es un problema tanto de producción de cultivos como de calidad nutricional, con posibles implicaciones económicas y de salud. [193]

Otros cultivos transgénicos utilizados por los agricultores incluyen cultivos resistentes a los insectos, que tienen un gen de la bacteria del suelo Bacillus thuringiensis (Bt), que produce una toxina específica para los insectos. Estos cultivos resisten el daño causado por los insectos. [194] Algunos creen que se pueden adquirir rasgos de resistencia a las plagas similares o mejores mediante prácticas de cultivo tradicionales, y que la resistencia a varias plagas se puede obtener mediante hibridación o polinización cruzada con especies silvestres. En algunos casos, las especies silvestres son la fuente principal de los rasgos de resistencia; algunas variedades de tomate que han ganado resistencia a al menos 19 enfermedades lo hicieron mediante el cruce con poblaciones silvestres de tomates. [195]

Impacto ambiental

Efectos y costos

Contaminación del agua en un arroyo rural debido a la escorrentía de la actividad agrícola en Nueva Zelanda

La agricultura es a la vez causa y sensible a la degradación ambiental , como la pérdida de biodiversidad , la desertificación , la degradación del suelo y el cambio climático , que causan disminuciones en el rendimiento de los cultivos. [196] La agricultura es uno de los impulsores más importantes de las presiones ambientales, en particular el cambio de hábitat, el cambio climático, el uso del agua y las emisiones tóxicas. La agricultura es la principal fuente de toxinas liberadas al medio ambiente, incluidos los insecticidas, especialmente los utilizados en el algodón. [197] [198] [ página necesaria ] El informe de Economía Verde del PNUMA de 2011 afirmó que las operaciones agrícolas produjeron alrededor del 13 por ciento de las emisiones globales de gases de efecto invernadero antropogénicos. Esto incluye gases provenientes del uso de fertilizantes inorgánicos, pesticidas agroquímicos y herbicidas, así como insumos de energía de combustibles fósiles. [199]

La agricultura impone múltiples costos externos a la sociedad a través de efectos tales como daños a la naturaleza causados ​​por pesticidas (especialmente herbicidas e insecticidas), escorrentía de nutrientes, uso excesivo de agua y pérdida del medio ambiente natural. Una evaluación de la agricultura en el Reino Unido realizada en 2000 determinó que los costos externos totales para 1996 fueron de 2.343 millones de libras esterlinas, o 208 libras esterlinas por hectárea. [200] Un análisis de estos costos en los Estados Unidos realizado en 2005 concluyó que las tierras de cultivo imponen aproximadamente entre 5.000 y 16.000 millones de dólares (entre 30.000 y 96.000 dólares por hectárea), mientras que la producción ganadera impone 714 millones de dólares. [201] Ambos estudios, que se centraron únicamente en los impactos fiscales, concluyeron que se debería hacer más para internalizar los costos externos. Ninguno incluyó los subsidios en su análisis, pero señalaron que los subsidios también influyen en el costo de la agricultura para la sociedad. [200] [201]

La agricultura busca aumentar el rendimiento y reducir los costos, empleando a menudo medidas que reducen la biodiversidad a niveles muy bajos. El rendimiento aumenta con insumos como fertilizantes y la eliminación de patógenos, depredadores y competidores (como las malas hierbas). Los costos disminuyen con el aumento de la escala de las unidades agrícolas, por ejemplo, haciendo los campos más grandes; esto significa eliminar setos , zanjas y otras áreas de hábitat. Los pesticidas matan insectos, plantas y hongos. Los rendimientos efectivos disminuyen con las pérdidas en la finca, que pueden ser causadas por malas prácticas de producción durante la cosecha, la manipulación y el almacenamiento. [202]

Los efectos ambientales del cambio climático muestran que la investigación sobre plagas y enfermedades que generalmente no afectan a ciertas áreas es esencial. En 2021, los agricultores descubrieron la roya del tallo en el trigo en la zona de Champaña (Francia), una enfermedad que anteriormente solo se había presentado en Marruecos durante 20 a 30 años. Debido al cambio climático, los insectos que solían morir durante el invierno ahora están vivos y se multiplican. [203] [204]

Problemas relacionados con el ganado

El digestor anaeróbico de corral convierte los desechos vegetales y el estiércol del ganado en combustible de biogás .

Un alto funcionario de la ONU, Henning Steinfeld, dijo que "la ganadería es uno de los contribuyentes más importantes a los problemas ambientales más graves de la actualidad". [205] La producción ganadera ocupa el 70% de toda la tierra utilizada para la agricultura, o el 30% de la superficie terrestre del planeta. Es una de las mayores fuentes de gases de efecto invernadero , responsable del 18% de las emisiones de gases de efecto invernadero del mundo medidas en equivalentes de CO 2 . En comparación, todo el transporte emite el 13,5% del CO 2 . Produce el 65% del óxido nitroso relacionado con el hombre (que tiene 296 veces el potencial de calentamiento global del CO 2 ) y el 37% de todo el metano inducido por el hombre (que es 23 veces más calentamiento que el CO 2 ). También genera el 64% de la emisión de amoníaco . La expansión de la ganadería se cita como un factor clave que impulsa la deforestación ; en la cuenca del Amazonas, el 70% del área anteriormente forestal ahora está ocupada por pastizales y el resto se utiliza para cultivos forrajeros. [206] La ganadería también está provocando reducciones en la biodiversidad a través de la deforestación y la degradación de las tierras . Un fenómeno bien documentado es la invasión de plantas leñosas , causada por el pastoreo excesivo en los pastizales. [207] Además, el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) afirma que " se prevé que las emisiones de metano de la ganadería mundial aumenten en un 60 por ciento para 2030 con las prácticas y los patrones de consumo actuales". [199]

Cuestiones de tierra y agua

Países con la mayor proporción de extracción de agua para la agricultura respecto de la extracción total.
Campos de cultivo irrigados circulares en Kansas . Los cultivos saludables de maíz y sorgo están en crecimiento y son verdes (el sorgo puede ser un poco más pálido). El trigo es de un dorado brillante. Los campos de color marrón se han cosechado y arado recientemente o han permanecido en barbecho durante el año.

La transformación de la tierra, el uso de la tierra para producir bienes y servicios, es la forma más sustancial en que los humanos alteran los ecosistemas de la Tierra y es la fuerza impulsora que causa la pérdida de biodiversidad . Las estimaciones de la cantidad de tierra transformada por los humanos varían del 39 al 50%. [208] Se estima que el 24% de la tierra a nivel mundial experimenta degradación de la tierra, una disminución a largo plazo en la función y productividad del ecosistema, y ​​las tierras de cultivo se ven afectadas desproporcionadamente. [209] La gestión de la tierra es el factor impulsor de la degradación; 1.500 millones de personas dependen de la tierra degradada. La degradación puede producirse por deforestación, desertificación , erosión del suelo , agotamiento de minerales, acidificación o salinización . [144] En 2021, la superficie agrícola mundial fue de 4.790 millones de hectáreas (ha), un 2% menos, o 0,09 mil millones de ha, en comparación con 2000. Entre 2000 y 2021, aproximadamente dos tercios de las tierras agrícolas se utilizaron para praderas y pastos permanentes (3.210 millones de ha en 2021), lo que disminuyó un 5% (0,17 mil millones de ha). Un tercio de las tierras agrícolas totales eran tierras de cultivo (1.580 millones de ha en 2021), lo que aumentó un 6% (0,09 mil millones de ha). [108]

La eutrofización , el enriquecimiento excesivo de nutrientes en los ecosistemas acuáticos que da lugar a floraciones de algas y anoxia , provoca la muerte de peces , la pérdida de biodiversidad y hace que el agua no sea apta para beber ni para otros usos industriales. La aplicación excesiva de fertilizantes y estiércol en las tierras de cultivo, así como las altas densidades de población ganadera, provocan la escorrentía y la lixiviación de nutrientes (principalmente nitrógeno y fósforo ) de las tierras agrícolas. Estos nutrientes son importantes contaminantes no puntuales que contribuyen a la eutrofización de los ecosistemas acuáticos y a la contaminación de las aguas subterráneas, con efectos nocivos para las poblaciones humanas. [210] Los fertilizantes también reducen la biodiversidad terrestre al aumentar la competencia por la luz, lo que favorece a las especies que pueden beneficiarse de los nutrientes añadidos. [211]

La agricultura se enfrenta simultáneamente a una creciente demanda de agua dulce y a anomalías en las precipitaciones (sequías, inundaciones y lluvias y fenómenos meteorológicos extremos) en las zonas de secano, los campos y las tierras de pastoreo. [162] La agricultura representa el 70 por ciento de las extracciones de recursos de agua dulce, [212] [213] y se estima que el 41 por ciento del uso actual de agua para riego mundial se produce a expensas de los requisitos de caudal medioambiental. [162] Se sabe desde hace tiempo que los acuíferos de zonas tan diversas como el norte de China, el Alto Ganges y el oeste de Estados Unidos se están agotando, y nuevas investigaciones extienden estos problemas a los acuíferos de Irán, México y Arabia Saudita. [214] La industria y las zonas urbanas están ejerciendo una presión cada vez mayor sobre los recursos hídricos, lo que significa que la escasez de agua está aumentando y la agricultura se enfrenta al reto de producir más alimentos para la creciente población mundial con recursos hídricos reducidos. [215] Si bien las extracciones industriales han disminuido en las últimas décadas y las extracciones municipales han aumentado solo marginalmente desde 2010, las extracciones agrícolas han seguido creciendo a un ritmo cada vez más rápido. [162] El uso agrícola del agua también puede causar importantes problemas ambientales, incluida la destrucción de humedales naturales, la propagación de enfermedades transmitidas por el agua y la degradación de la tierra a través de la salinización y el anegamiento, cuando el riego se realiza incorrectamente. [216]

Pesticidas

Rociar un cultivo con un pesticida

El uso de pesticidas ha aumentado desde 1950 a 2,5 millones de toneladas cortas anuales en todo el mundo, pero la pérdida de cultivos debido a las plagas se ha mantenido relativamente constante. [217] La ​​Organización Mundial de la Salud estimó en 1992 que se producen tres millones de intoxicaciones por pesticidas al año, que causan 220.000 muertes. [218] Los pesticidas seleccionan la resistencia a los pesticidas en la población de plagas, lo que conduce a una condición denominada "cinta de correr de pesticidas" en la que la resistencia de las plagas justifica el desarrollo de un nuevo pesticida. [219]

Un argumento alternativo es que la manera de "salvar el medio ambiente" y prevenir la hambruna es mediante el uso de pesticidas y la agricultura intensiva de alto rendimiento, una visión ejemplificada por una cita que encabeza el sitio web del Centro para Asuntos Alimentarios Mundiales: "Cultivar más por acre deja más tierra para la naturaleza". [220] [221] Sin embargo, los críticos argumentan que no es inevitable que haya una compensación entre el medio ambiente y la necesidad de alimentos, [222] y que los pesticidas pueden reemplazar las buenas prácticas agronómicas como la rotación de cultivos. [219] La técnica de manejo de plagas agrícolas Push-pull implica el cultivo intercalado, utilizando aromas de plantas para repeler las plagas de los cultivos (push) y atraerlas a un lugar del que luego puedan ser eliminadas (pull). [223]

Contribución al cambio climático

Emisiones mundiales de gases de efecto invernadero en origen de las explotaciones agrícolas por actividad

La agricultura contribuye al cambio climático a través de las emisiones de gases de efecto invernadero y por la conversión de tierras no agrícolas, como los bosques, en tierras agrícolas. [224] El sector de la agricultura, la silvicultura y el uso de la tierra contribuyen entre el 13% y el 21% de las emisiones globales de gases de efecto invernadero. [225] Las emisiones de óxido nitroso y metano representan más de la mitad de las emisiones totales de gases de efecto invernadero de la agricultura. [226] La cría de animales es una fuente importante de emisiones de gases de efecto invernadero. [227]

Aproximadamente el 57% de las emisiones globales de GEI provenientes de la producción de alimentos provienen de la producción de alimentos de origen animal, mientras que los alimentos de origen vegetal contribuyen con el 29% y el 14% restante se destina a otros usos. [228] La gestión de las tierras agrícolas y el cambio de uso de la tierra representaron las mayores proporciones de las emisiones totales (38% y 29%, respectivamente), mientras que el arroz y la carne de vacuno fueron los productos de origen vegetal y animal que más contribuyeron (12% y 25%, respectivamente). [228] El sur y sudeste de Asia y Sudamérica fueron los mayores emisores de GEI derivados de la producción. [228]

Sostenibilidad

Las terrazas, la labranza de conservación y las zonas de protección reducen la erosión del suelo y la contaminación del agua en esta granja de Iowa.

Los métodos agrícolas actuales han dado lugar a una sobreexplotación de los recursos hídricos, a altos niveles de erosión y a una reducción de la fertilidad del suelo. No hay suficiente agua para seguir cultivando con las prácticas actuales; por lo tanto, es necesario reconsiderar la forma en que se utilizan los recursos hídricos, de la tierra y de los ecosistemas para aumentar el rendimiento de los cultivos. Una solución sería dar valor a los ecosistemas, reconociendo las compensaciones ambientales y de subsistencia, y equilibrando los derechos de una variedad de usuarios e intereses. [229] Habría que abordar las desigualdades que resultan de la adopción de tales medidas, como la reasignación del agua de los pobres a los ricos, la tala de tierras para dejar paso a tierras agrícolas más productivas o la preservación de un sistema de humedales que limita los derechos de pesca. [230]

Los avances tecnológicos ayudan a proporcionar a los agricultores herramientas y recursos para hacer que la agricultura sea más sostenible. [231] La tecnología permite innovaciones como la labranza de conservación , un proceso agrícola que ayuda a prevenir la pérdida de tierras por erosión, reduce la contaminación del agua y mejora la captura de carbono . [232]

La automatización agrícola puede ayudar a abordar algunos de los desafíos asociados con el cambio climático y, por lo tanto, facilitar los esfuerzos de adaptación. [160] Por ejemplo, la aplicación de tecnologías de automatización digital (por ejemplo, en la agricultura de precisión) puede mejorar la eficiencia del uso de los recursos en condiciones que son cada vez más limitadas para los productores agrícolas. [160] Además, cuando se aplican a la detección y la alerta temprana, pueden ayudar a abordar la incertidumbre e imprevisibilidad de las condiciones climáticas asociadas con la aceleración del cambio climático. [160]

Otras posibles prácticas sostenibles incluyen la agricultura de conservación , la agroforestería , el pastoreo mejorado , la conversión evitada de pastizales y el biocarbón . [233] [234] Las prácticas agrícolas de monocultivo actuales en los Estados Unidos impiden la adopción generalizada de prácticas sostenibles, como rotaciones de 2 a 3 cultivos que incorporan pasto o heno con cultivos anuales, a menos que los objetivos de emisiones negativas, como el secuestro de carbono del suelo, se conviertan en políticas. [235]

La demanda de alimentos de la población proyectada de la Tierra, con las predicciones actuales de cambio climático, podría satisfacerse mediante la mejora de los métodos agrícolas, la expansión de las áreas agrícolas y una mentalidad del consumidor orientada a la sostenibilidad. [236]

Dependencia energética

Agricultura mecanizada : desde los primeros modelos de la década de 1940, herramientas como una cosechadora de algodón podían sustituir a 50 trabajadores agrícolas, al precio de un mayor uso de combustibles fósiles .

Desde la década de 1940, la productividad agrícola ha aumentado drásticamente, debido en gran medida al mayor uso de mecanización, fertilizantes y pesticidas que consumen mucha energía. La gran mayoría de este insumo energético proviene de fuentes de combustibles fósiles . [237] Entre la década de 1960 y la de 1980, la Revolución Verde transformó la agricultura en todo el mundo, con un aumento significativo de la producción mundial de cereales (entre el 70% y el 390% para el trigo y entre el 60% y el 150% para el arroz, según la zona geográfica) [238] a medida que la población mundial se duplicaba. La fuerte dependencia de los productos petroquímicos ha suscitado preocupaciones de que la escasez de petróleo podría aumentar los costos y reducir la producción agrícola. [239]

La agricultura industrializada depende de los combustibles fósiles de dos maneras fundamentales: el consumo directo en la explotación agrícola y la fabricación de los insumos utilizados en la explotación agrícola. El consumo directo incluye el uso de lubricantes y combustibles para el funcionamiento de los vehículos y la maquinaria agrícola. [239]

El consumo indirecto incluye la fabricación de fertilizantes, pesticidas y maquinaria agrícola. [239] En particular, la producción de fertilizantes nitrogenados puede representar más de la mitad del uso de energía agrícola. [240] En conjunto, el consumo directo e indirecto de las granjas estadounidenses representa aproximadamente el 2% del uso de energía del país. El consumo directo e indirecto de energía de las granjas estadounidenses alcanzó su punto máximo en 1979 y desde entonces ha disminuido gradualmente. [239] Los sistemas alimentarios abarcan no solo la agricultura, sino también el procesamiento, el envasado, el transporte, la comercialización, el consumo y la eliminación fuera de la granja de alimentos y artículos relacionados con los alimentos. La agricultura representa menos de una quinta parte del uso de energía del sistema alimentario en los EE. UU. [241] [242]

Contaminación plástica

Los productos plásticos se utilizan ampliamente en la agricultura, incluso para aumentar el rendimiento de los cultivos y mejorar la eficiencia del uso del agua y los agroquímicos. Los productos "agroplásticos" incluyen películas para cubrir invernaderos y túneles, mantillo para cubrir el suelo (por ejemplo, para eliminar las malas hierbas, conservar el agua , aumentar la temperatura del suelo y facilitar la aplicación de fertilizantes), telas de sombra, contenedores de pesticidas, bandejas para plántulas, mallas protectoras y tuberías de riego. Los polímeros más comúnmente utilizados en estos productos son el polietileno de baja densidad (LPDE), el polietileno lineal de baja densidad (LLDPE), el polipropileno (PP) y el cloruro de polivinilo (PVC). [243]

The total amount of plastics used in agriculture is difficult to quantify. A 2012 study reported that almost 6.5 million tonnes per year were consumed globally while a later study estimated that global demand in 2015 was between 7.3 million and 9 million tonnes. Widespread use of plastic mulch and lack of systematic collection and management have led to the generation of large amounts of mulch residue. Weathering and degradation eventually cause the mulch to fragment. These fragments and larger pieces of plastic accumulate in soil. Mulch residue has been measured at levels of 50 to 260 kg per hectare in topsoil in areas where mulch use dates back more than 10 years, which confirms that mulching is a major source of both microplastic and macroplastic soil contamination.[243]

Agricultural plastics, especially plastic films, are not easy to recycle because of high contamination levels (up to 40–50% by weight contamination by pesticides, fertilizers, soil and debris, moist vegetation, silage juice water, and UV stabilizers) and collection difficulties . Therefore, they are often buried or abandoned in fields and watercourses or burned. These disposal practices lead to soil degradation and can result in contamination of soils and leakage of microplastics into the marine environment as a result of precipitation run-off and tidal washing. In addition, additives in residual plastic film (such as UV and thermal stabilizers) may have deleterious effects on crop growth, soil structure, nutrient transport and salt levels. There is a risk that plastic mulch will deteriorate soil quality, deplete soil organic matter stocks, increase soil water repellence and emit greenhouse gases. Microplastics released through fragmentation of agricultural plastics can absorb and concentrate contaminants capable of being passed up the trophic chain.[243]

Disciplines

Agricultural economics

In 19th century Britain, the protectionist Corn Laws led to high prices and widespread protest, such as this 1846 meeting of the Anti-Corn Law League.[244]

Agricultural economics is economics as it relates to the "production, distribution and consumption of [agricultural] goods and services".[245] Combining agricultural production with general theories of marketing and business as a discipline of study began in the late 1800s, and grew significantly through the 20th century.[246] Although the study of agricultural economics is relatively recent, major trends in agriculture have significantly affected national and international economies throughout history, ranging from tenant farmers and sharecropping in the post-American Civil War Southern United States[247] to the European feudal system of manorialism.[248] In the United States, and elsewhere, food costs attributed to food processing, distribution, and agricultural marketing, sometimes referred to as the value chain, have risen while the costs attributed to farming have declined. This is related to the greater efficiency of farming, combined with the increased level of value addition (e.g. more highly processed products) provided by the supply chain. Market concentration has increased in the sector as well, and although the total effect of the increased market concentration is likely increased efficiency, the changes redistribute economic surplus from producers (farmers) and consumers, and may have negative implications for rural communities.[249]

National government policies, such as taxation, subsidies, tariffs and others, can significantly change the economic marketplace for agricultural products.[250] Since at least the 1960s, a combination of trade restrictions, exchange rate policies and subsidies have affected farmers in both the developing and the developed world. In the 1980s, non-subsidized farmers in developing countries experienced adverse effects from national policies that created artificially low global prices for farm products. Between the mid-1980s and the early 2000s, several international agreements limited agricultural tariffs, subsidies and other trade restrictions.[251]

However, as of 2009, there was still a significant amount of policy-driven distortion in global agricultural product prices. The three agricultural products with the most trade distortion were sugar, milk and rice, mainly due to taxation. Among the oilseeds, sesame had the most taxation, but overall, feed grains and oilseeds had much lower levels of taxation than livestock products. Since the 1980s, policy-driven distortions have decreases more among livestock products than crops during the worldwide reforms in agricultural policy.[250] Despite this progress, certain crops, such as cotton, still see subsidies in developed countries artificially deflating global prices, causing hardship in developing countries with non-subsidized farmers.[252] Unprocessed commodities such as corn, soybeans, and cattle are generally graded to indicate quality, affecting the price the producer receives. Commodities are generally reported by production quantities, such as volume, number or weight.[253]

Agricultural science

An agronomist mapping a plant genome

Agricultural science is a broad multidisciplinary field of biology that encompasses the parts of exact, natural, economic and social sciences used in the practice and understanding of agriculture. It covers topics such as agronomy, plant breeding and genetics, plant pathology, crop modelling, soil science, entomology, production techniques and improvement, study of pests and their management, and study of adverse environmental effects such as soil degradation, waste management, and bioremediation.[254][255]

The scientific study of agriculture began in the 18th century, when Johann Friedrich Mayer conducted experiments on the use of gypsum (hydrated calcium sulphate) as a fertilizer.[256] Research became more systematic when in 1843, John Lawes and Henry Gilbert began a set of long-term agronomy field experiments at Rothamsted Research Station in England; some of them, such as the Park Grass Experiment, are still running.[257][258] In America, the Hatch Act of 1887 provided funding for what it was the first to call "agricultural science", driven by farmers' interest in fertilizers.[259] In agricultural entomology, the USDA began to research biological control in 1881; it instituted its first large program in 1905, searching Europe and Japan for natural enemies of the spongy moth and brown-tail moth, establishing parasitoids (such as solitary wasps) and predators of both pests in the US.[260][261][262]

Policy

Agricultural policy is the set of government decisions and actions relating to domestic agriculture and imports of foreign agricultural products. Governments usually implement agricultural policies with the goal of achieving a specific outcome in the domestic agricultural product markets. Some overarching themes include risk management and adjustment (including policies related to climate change, food safety and natural disasters), economic stability (including policies related to taxes), natural resources and environmental sustainability (especially water policy), research and development, and market access for domestic commodities (including relations with global organizations and agreements with other countries).[264] Agricultural policy can also touch on food quality, ensuring that the food supply is of a consistent and known quality, food security, ensuring that the food supply meets the population's needs, and conservation. Policy programs can range from financial programs, such as subsidies, to encouraging producers to enroll in voluntary quality assurance programs.[265]

A 2021 report finds that globally, support to agricultural producers accounts for almost US$540 billion a year.[266] This amounts to 15 percent of total agricultural production value, and is heavily biased towards measures that are leading to inefficiency, as well as are unequally distributed and harmful for the environment and human health.[266]  

There are many influences on the creation of agricultural policy, including consumers, agribusiness, trade lobbies and other groups. Agribusiness interests hold a large amount of influence over policy making, in the form of lobbying and campaign contributions. Political action groups, including those interested in environmental issues and labor unions, also provide influence, as do lobbying organizations representing individual agricultural commodities.[267] The Food and Agriculture Organization of the United Nations (FAO) leads international efforts to defeat hunger and provides a forum for the negotiation of global agricultural regulations and agreements. Samuel Jutzi, director of FAO's animal production and health division, states that lobbying by large corporations has stopped reforms that would improve human health and the environment. For example, proposals in 2010 for a voluntary code of conduct for the livestock industry that would have provided incentives for improving standards for health, and environmental regulations, such as the number of animals an area of land can support without long-term damage, were successfully defeated due to large food company pressure.[268]

See also

References

  1. ^ The State of Food and Agriculture 2021. Making agrifood systems more resilient to shocks and stresses. Rome: Food and Agriculture Organization of the United Nations. 2021. doi:10.4060/cb4476en. ISBN 978-92-5-134329-6. S2CID 244548456. Archived from the original on 13 April 2023. Retrieved 3 February 2023.
  2. ^ a b c d Lowder, Sarah K.; Sánchez, Marco V.; Bertini, Raffaele (1 June 2021). "Which farms feed the world and has farmland become more concentrated?". World Development. 142: 105455. doi:10.1016/j.worlddev.2021.105455. ISSN 0305-750X. S2CID 233553897.
  3. ^ "FAOSTAT. New Food Balance Sheets". Food and Agriculture Organization. Archived from the original on 4 January 2024. Retrieved 12 July 2021.
  4. ^ "Discover Natural Fibres Initiative – DNFI.org". dnfi.org. Archived from the original on 10 April 2023. Retrieved 3 February 2023.
  5. ^ "FAOSTAT. Forestry Production and Trade". Food and Agriculture Organization. Archived from the original on 4 January 2024. Retrieved 12 July 2021.
  6. ^ In Brief: The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Rome: Food and Agriculture Organization. 2023. doi:10.4060/cc4140en. ISBN 978-92-5-137588-4. Archived from the original on 27 September 2023. Retrieved 4 January 2024.
  7. ^ Chantrell, Glynnis, ed. (2002). The Oxford Dictionary of Word Histories. Oxford University Press. p. 14. ISBN 978-0-19-863121-7.
  8. ^ St. Fleur, Nicholas (6 October 2018). "An Ancient Ant-Bacteria Partnership to Protect Fungus". The New York Times. Archived from the original on 1 January 2022. Retrieved 14 July 2020.
  9. ^ Li, Hongjie; Sosa Calvo, Jeffrey; Horn, Heidi A.; Pupo, Mônica T.; Clardy, Jon; Rabeling, Cristian; Schultz, Ted R.; Currie, Cameron R. (2018). "Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants". Proceedings of the National Academy of Sciences of the United States of America. 115 (42): 10725. Bibcode:2018PNAS..11510720L. doi:10.1073/pnas.1809332115. ISSN 0027-8424. PMC 6196509. PMID 30282739.
  10. ^ Mueller, Ulrich G.; Gerardo, Nicole M.; Aanen, Duur K.; Six, Diana L.; Schultz, Ted R. (December 2005). "The Evolution of Agriculture in Insects". Annual Review of Ecology, Evolution, and Systematics. 36: 563–595. doi:10.1146/annurev.ecolsys.36.102003.152626.
  11. ^ a b "Definition of Agriculture". State of Maine. Archived from the original on 23 March 2012. Retrieved 6 May 2013.
  12. ^ Stevenson, G. C. (1971). "Plant Agriculture Selected and introduced by Janick Jules and Others San Francisco: Freeman (1970), pp. 246, £2.10". Experimental Agriculture. 7 (4). Cambridge University Press (CUP): 363. doi:10.1017/s0014479700023371. ISSN 0014-4797. S2CID 85571333.
  13. ^ Herren, R.V. (2012). Science of Animal Agriculture. Cengage Learning. ISBN 978-1-133-41722-4. Archived from the original on 31 May 2022. Retrieved 1 May 2022.
  14. ^ a b Larson, G.; Piperno, D. R.; Allaby, R. G.; Purugganan, M. D.; Andersson, L.; Arroyo-Kalin, M.; Barton, L.; Climer Vigueira, C.; Denham, T.; Dobney, K.; Doust, A. N.; Gepts, P.; Gilbert, M. T. P.; Gremillion, K. J.; Lucas, L.; Lukens, L.; Marshall, F. B.; Olsen, K. M.; Pires, J.C.; Richerson, P. J.; Rubio De Casas, R.; Sanjur, O.I.; Thomas, M. G.; Fuller, D.Q. (2014). "Current perspectives and the future of domestication studies". PNAS. 111 (17): 6139–6146. Bibcode:2014PNAS..111.6139L. doi:10.1073/pnas.1323964111. PMC 4035915. PMID 24757054.
  15. ^ Denham, T. P. (2003). "Origins of Agriculture at Kuk Swamp in the Highlands of New Guinea". Science. 301 (5630): 189–193. doi:10.1126/science.1085255. PMID 12817084. S2CID 10644185.
  16. ^ Bocquet-Appel, Jean-Pierre (29 July 2011). "When the World's Population Took Off: The Springboard of the Neolithic Demographic Transition". Science. 333 (6042): 560–561. Bibcode:2011Sci...333..560B. doi:10.1126/science.1208880. PMID 21798934. S2CID 29655920.
  17. ^ Stephens, Lucas; Fuller, Dorian; Boivin, Nicole; Rick, Torben; Gauthier, Nicolas; Kay, Andrea; Marwick, Ben; Armstrong, Chelsey Geralda; Barton, C. Michael (30 August 2019). "Archaeological assessment reveals Earth's early transformation through land use". Science. 365 (6456): 897–902. Bibcode:2019Sci...365..897S. doi:10.1126/science.aax1192. hdl:10150/634688. ISSN 0036-8075. PMID 31467217. S2CID 201674203.
  18. ^ Harmon, Katherine (17 December 2009). "Humans feasting on grains for at least 100,000 years". Scientific American. Archived from the original on 17 September 2016. Retrieved 28 August 2016.
  19. ^ Snir, Ainit; Nadel, Dani; Groman-Yaroslavski, Iris; Melamed, Yoel; Sternberg, Marcelo; Bar-Yosef, Ofer; Weiss, Ehud (22 July 2015). "The Origin of Cultivation and Proto-Weeds, Long Before Neolithic Farming". PLOS ONE. 10 (7): e0131422. Bibcode:2015PLoSO..1031422S. doi:10.1371/journal.pone.0131422. ISSN 1932-6203. PMC 4511808. PMID 26200895.
  20. ^ "First evidence of farming in Mideast 23,000 years ago: Evidence of earliest small-scale agricultural cultivation". ScienceDaily. Archived from the original on 23 April 2022. Retrieved 23 April 2022.
  21. ^ Zong, Y.; When, Z.; Innes, J. B.; Chen, C.; Wang, Z.; Wang, H. (2007). "Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China". Nature. 449 (7161): 459–462. Bibcode:2007Natur.449..459Z. doi:10.1038/nature06135. PMID 17898767. S2CID 4426729.
  22. ^ Ensminger, M. E.; Parker, R. O. (1986). Sheep and Goat Science (Fifth ed.). Interstate Printers and Publishers. ISBN 978-0-8134-2464-4.
  23. ^ McTavish, E. J.; Decker, J. E.; Schnabel, R.D.; Taylor, J. F.; Hillis, D. M. (2013). "New World cattle show ancestry from multiple independent domestication events". PNAS. 110 (15): E1398–1406. Bibcode:2013PNAS..110E1398M. doi:10.1073/pnas.1303367110. PMC 3625352. PMID 23530234.
  24. ^ Larson, Greger; Dobney, Keith; Albarella, Umberto; Fang, Meiying; Matisoo-Smith, Elizabeth; Robins, Judith; Lowden, Stewart; Finlayson, Heather; Brand, Tina (11 March 2005). "Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication". Science. 307 (5715): 1618–1621. Bibcode:2005Sci...307.1618L. doi:10.1126/science.1106927. PMID 15761152. S2CID 39923483.
  25. ^ Larson, Greger; Albarella, Umberto; Dobney, Keith; Rowley-Conwy, Peter; Schibler, Jörg; Tresset, Anne; Vigne, Jean-Denis; Edwards, Ceiridwen J.; Schlumbaum, Angela (25 September 2007). "Ancient DNA, pig domestication, and the spread of the Neolithic into Europe". PNAS. 104 (39): 15276–15281. Bibcode:2007PNAS..10415276L. doi:10.1073/pnas.0703411104. PMC 1976408. PMID 17855556.
  26. ^ Broudy, Eric (1979). The Book of Looms: A History of the Handloom from Ancient Times to the Present. UPNE. p. 81. ISBN 978-0-87451-649-4. Archived from the original on 10 February 2018. Retrieved 10 February 2019.
  27. ^ "The Evolution of Corn". University of Utah HEALTH SCIENCES. Archived from the original on 13 July 2019. Retrieved 2 January 2016.
  28. ^ Benz, B. F. (2001). "Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca". Proceedings of the National Academy of Sciences. 98 (4): 2104–2106. Bibcode:2001PNAS...98.2104B. doi:10.1073/pnas.98.4.2104. PMC 29389. PMID 11172083.
  29. ^ Johannessen, S.; Hastorf, C. A. (eds.) Corn and Culture in the Prehistoric New World, Westview Press, Boulder, Colorado.
  30. ^ Dance, Amber (4 May 2022). "The tale of the domesticated horse". Knowable Magazine. doi:10.1146/knowable-050422-1. Archived from the original on 29 September 2022. Retrieved 28 October 2022.
  31. ^ Hillman, G. C. (1996) "Late Pleistocene changes in wild plant-foods available to hunter-gatherers of the northern Fertile Crescent: Possible preludes to cereal cultivation". In D. R. Harris (ed.) The Origins and Spread of Agriculture and Pastoralism in Eurasia, UCL Books, London, pp. 159–203. ISBN 9781857285383
  32. ^ Sato, Y. (2003) "Origin of rice cultivation in the Yangtze River basin". In Y. Yasuda (ed.) The Origins of Pottery and Agriculture, Roli Books, New Delhi, p. 196
  33. ^ a b Gerritsen, R. (2008). "Australia and the Origins of Agriculture". Encyclopedia of Global Archaeology. Archaeopress. pp. 29–30. doi:10.1007/978-1-4419-0465-2_1896. ISBN 978-1-4073-0354-3. S2CID 129339276.
  34. ^ Diamond, J.; Bellwood, P. (2003). "Farmers and Their Languages: The First Expansions". Science. 300 (5619): 597–603. Bibcode:2003Sci...300..597D. CiteSeerX 10.1.1.1013.4523. doi:10.1126/science.1078208. PMID 12714734. S2CID 13350469.
  35. ^ "When the First Farmers Arrived in Europe, Inequality Evolved". Scientific American. 1 July 2020. Archived from the original on 25 May 2022. Retrieved 28 October 2022.
  36. ^ "Farming". British Museum. Archived from the original on 16 June 2016. Retrieved 15 June 2016.
  37. ^ Janick, Jules. "Ancient Egyptian Agriculture and the Origins of Horticulture" (PDF). Acta Hort. 583: 23–39. Archived (PDF) from the original on 25 May 2013. Retrieved 1 April 2018.
  38. ^ Kees, Herman (1961). Ancient Egypt: A Cultural Topography. University of Chicago Press. ISBN 978-0226429144.
  39. ^ Gupta, Anil K. (2004). "Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration" (PDF). Current Science. 87 (1): 59. JSTOR 24107979. Archived (PDF) from the original on 20 January 2019. Retrieved 23 April 2019.
  40. ^ Baber, Zaheer (1996). The Science of Empire: Scientific Knowledge, Civilization, and Colonial Rule in India. State University of New York Press. 19. ISBN 0-7914-2919-9.
  41. ^ Harris, David R. and Gosden, C. (1996). The Origins and Spread of Agriculture and Pastoralism in Eurasia: Crops, Fields, Flocks And Herds. Routledge. p. 385. ISBN 1-85728-538-7.
  42. ^ Possehl, Gregory L. (1996). Mehrgarh in Oxford Companion to Archaeology, Ed. Brian Fagan. Oxford University Press.
  43. ^ Stein, Burton (1998). A History of India. Blackwell Publishing. p. 47. ISBN 0-631-20546-2.
  44. ^ Lal, R. (2001). "Thematic evolution of ISTRO: transition in scientific issues and research focus from 1955 to 2000". Soil and Tillage Research. 61 (1–2): 3–12. Bibcode:2001STilR..61....3L. doi:10.1016/S0167-1987(01)00184-2.
  45. ^ Needham, Vol. 6, Part 2, pp. 55–57.
  46. ^ Needham, Vol. 4, Part 2, pp. 89, 110, 184.
  47. ^ Needham, Vol. 4, Part 2, p. 110.
  48. ^ Greenberger, Robert (2006) The Technology of Ancient China, Rosen Publishing Group. pp. 11–12. ISBN 1404205586
  49. ^ Wang Zhongshu, trans. by K. C. Chang and Collaborators, Han Civilization (New Haven and London: Yale University Press, 1982).
  50. ^ Glick, Thomas F. (2005). Medieval Science, Technology And Medicine: An Encyclopedia. Volume 11 of The Routledge Encyclopedias of the Middle Ages Series. Psychology Press. p. 270. ISBN 978-0-415-96930-7. Archived from the original on 13 April 2023. Retrieved 10 February 2019.
  51. ^ Molina, J.; Sikora, M.; Garud, N.; Flowers, J. M.; Rubinstein, S.; Reynolds, A.; Huang, P.; Jackson, S.; Schaal, B. A.; Bustamante, C. D.; Boyko, A. R.; Purugganan, M. D. (2011). "Molecular evidence for a single evolutionary origin of domesticated rice". Proceedings of the National Academy of Sciences. 108 (20): 8351–8356. Bibcode:2011PNAS..108.8351M. doi:10.1073/pnas.1104686108. PMC 3101000. PMID 21536870.
  52. ^ Huang, Xuehui; Kurata, Nori; Wei, Xinghua; Wang, Zi-Xuan; Wang, Ahong; Zhao, Qiang; Zhao, Yan; Liu, Kunyan; et al. (2012). "A map of rice genome variation reveals the origin of cultivated rice". Nature. 490 (7421): 497–501. Bibcode:2012Natur.490..497H. doi:10.1038/nature11532. PMC 7518720. PMID 23034647.
  53. ^ Koester, Helmut (1995), History, Culture, and Religion of the Hellenistic Age, 2nd edition, Walter de Gruyter, pp. 76–77. ISBN 3-11-014693-2
  54. ^ White, K. D. (1970), Roman Farming. Cornell University Press.
  55. ^ a b Murphy, Denis (2011). Plants, Biotechnology and Agriculture. CABI. p. 153. ISBN 978-1-84593-913-7. Archived from the original on 13 April 2023. Retrieved 10 February 2019.
  56. ^ Davis, Nicola (29 October 2018). "Origin of chocolate shifts 1,400 miles and 1,500 years". The Guardian. Archived from the original on 30 October 2018. Retrieved 31 October 2018.
  57. ^ Speller, Camilla F.; et al. (2010). "Ancient mitochondrial DNA analysis reveals complexity of indigenous North American turkey domestication". PNAS. 107 (7): 2807–2812. Bibcode:2010PNAS..107.2807S. doi:10.1073/pnas.0909724107. PMC 2840336. PMID 20133614.
  58. ^ Mascarelli, Amanda (5 November 2010). "Mayans converted wetlands to farmland". Nature. doi:10.1038/news.2010.587. Archived from the original on 23 April 2021. Retrieved 17 May 2013.
  59. ^ Morgan, John (6 November 2013). "Invisible Artifacts: Uncovering Secrets of Ancient Maya Agriculture with Modern Soil Science". Soil Horizons. 53 (6): 3. doi:10.2136/sh2012-53-6-lf (inactive 24 April 2024).{{cite journal}}: CS1 maint: DOI inactive as of April 2024 (link)
  60. ^ Spooner, David M.; McLean, Karen; Ramsay, Gavin; Waugh, Robbie; Bryan, Glenn J. (2005). "A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping". PNAS. 102 (41): 14694–14699. Bibcode:2005PNAS..10214694S. doi:10.1073/pnas.0507400102. PMC 1253605. PMID 16203994.
  61. ^ Office of International Affairs (1989). Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. p. 92. doi:10.17226/1398. ISBN 978-0-309-04264-2. Archived from the original on 2 December 2012. Retrieved 1 April 2018 – via National Academies.org.
  62. ^ Francis, John Michael (2005). Iberia and the Americas. ABC-CLIO. ISBN 978-1-85109-426-4. Archived from the original on 13 April 2023. Retrieved 10 February 2019.
  63. ^ Piperno, Dolores R. (2011). "The Origin of Plant Cultivation and Domestication in the New World Tropics: Pattern, Process, and New Developments". Current Anthropology. 52 (S-4): S453–S470. doi:10.1086/659998. S2CID 83061925. Archived from the original on 19 October 2021. Retrieved 16 November 2023.
  64. ^ Broudy, Eric (1979). The Book of Looms: A History of the Handloom from Ancient Times to the Present. UPNE. p. 81. ISBN 978-0-87451-649-4. Archived from the original on 13 April 2023. Retrieved 10 February 2019.
  65. ^ Rischkowsky, Barbara; Pilling, Dafydd (2007). The State of the World's Animal Genetic Resources for Food and Agriculture. Food & Agriculture Organization. p. 10. ISBN 978-92-5-105762-9.
  66. ^ Heiser, Carl B. Jr. (1992). "On possible sources of the tobacco of prehistoric Eastern North America". Current Anthropology. 33: 54–56. doi:10.1086/204032. S2CID 144433864.
  67. ^ Ford, Richard I. (1985). Prehistoric Food Production in North América. University of Michigan, Museum of Anthropology, Publications Department. p. 75. ISBN 978-0-915703-01-2. Archived from the original on 9 March 2020. Retrieved 23 April 2019.
  68. ^ Adair, Mary J. (1988) Prehistoric Agriculture in the Central Plains. Publications in Anthropology 16. University of Kansas, Lawrence.
  69. ^ Smith, Andrew (2013). The Oxford Encyclopedia of Food and Drink in America. OUP US. p. 1. ISBN 978-0-19-973496-2. Archived from the original on 13 April 2023. Retrieved 10 February 2019.
  70. ^ Hardigan, Michael A. "P0653: Domestication History of Strawberry: Population Bottlenecks and Restructuring of Genetic Diversity through Time". Pland & Animal Genome Conference XXVI 13–17 January 2018 San Diego, California. Archived from the original on 1 March 2018. Retrieved 28 February 2018.
  71. ^ Sugihara, Neil G.; Van Wagtendonk, Jan W.; Shaffer, Kevin E.; Fites-Kaufman, Joann; Thode, Andrea E., eds. (2006). "17". Fire in California's Ecosystems. University of California Press. p. 417. ISBN 978-0-520-24605-8.
  72. ^ Blackburn, Thomas C.; Anderson, Kat, eds. (1993). Before the Wilderness: Environmental Management by Native Californians. Ballena Press. ISBN 978-0-87919-126-9.
  73. ^ Cunningham, Laura (2010). State of Change: Forgotten Landscapes of California. Heyday. pp. 135, 173–202. ISBN 978-1-59714-136-9. Archived from the original on 13 April 2023. Retrieved 10 February 2019.
  74. ^ Anderson, M. Kat (2006). Tending the Wild: Native American Knowledge And the Management of California's Natural Resources. University of California Press. ISBN 978-0-520-24851-9.
  75. ^ Wilson, Gilbert (1917). Agriculture of the Hidatsa Indians: An Indian Interpretation. Dodo Press. pp. 25 and passim. ISBN 978-1-4099-4233-7. Archived from the original on 14 March 2016.
  76. ^ Landon, Amanda J. (2008). "The "How" of the Three Sisters: The Origins of Agriculture in Mesoamerica and the Human Niche". Nebraska Anthropologist: 110–124. Archived from the original on 21 September 2013. Retrieved 1 April 2018.
  77. ^ Jones, R. (2012). "Fire-stick Farming". Fire Ecology. 8 (3): 3–8. Bibcode:2012FiEco...8c...3J. doi:10.1007/BF03400623.
  78. ^ Rowley-Conwy, Peter; Layton, Robert (27 March 2011). "Foraging and farming as niche construction: stable and unstable adaptations". Philosophical Transactions of the Royal Society B: Biological Sciences. 366 (1566): 849–862. doi:10.1098/rstb.2010.0307. ISSN 0962-8436. PMC 3048996. PMID 21320899.
  79. ^ Williams, Elizabeth (1988). "Complex Hunter-Gatherers: A Late Holocene Example from Temperate Australia". Archaeopress Archaeology. 423.
  80. ^ Lourandos, Harry (1997). Continent of Hunter-Gatherers: New Perspectives in Australian Prehistory. Cambridge University Press.
  81. ^ Gammage, Bill (October 2011). The Biggest Estate on Earth: How Aborigines made Australia. Allen & Unwin. pp. 281–304. ISBN 978-1-74237-748-3. Archived from the original on 13 April 2023. Retrieved 18 February 2019.
  82. ^ National Geographic (2015). Food Journeys of a Lifetime. National Geographic Society. p. 126. ISBN 978-1-4262-1609-1. Archived from the original on 13 April 2023. Retrieved 10 February 2019.
  83. ^ Watson, Andrew M. (1974). "The Arab Agricultural Revolution and Its Diffusion, 700–1100". The Journal of Economic History. 34 (1): 8–35. doi:10.1017/s0022050700079602. S2CID 154359726.
  84. ^ Crosby, Alfred. "The Columbian Exchange". The Gilder Lehrman Institute of American History. Archived from the original on 3 July 2013. Retrieved 11 May 2013.
  85. ^ Janick, Jules. "Agricultural Scientific Revolution: Mechanical" (PDF). Purdue University. Archived (PDF) from the original on 25 May 2013. Retrieved 24 May 2013.
  86. ^ Reid, John F. (2011). "The Impact of Mechanization on Agriculture". The Bridge on Agriculture and Information Technology. 41 (3). Archived from the original on 5 November 2013.
  87. ^ a b Philpott, Tom (19 April 2013). "A Brief History of Our Deadly Addiction to Nitrogen Fertilizer". Mother Jones. Archived from the original on 5 May 2013. Retrieved 7 May 2013.
  88. ^ "Ten worst famines of the 20th century". Sydney Morning Herald. 15 August 2011. Archived from the original on 3 July 2014.
  89. ^ Hobbs, Peter R; Sayre, Ken; Gupta, Raj (12 February 2008). "The role of conservation agriculture in sustainable agriculture". Philosophical Transactions of the Royal Society B: Biological Sciences. 363 (1491): 543–555. doi:10.1098/rstb.2007.2169. PMC 2610169. PMID 17720669.
  90. ^ Blench, Roger (2001). Pastoralists in the new millennium (PDF). FAO. pp. 11–12. Archived (PDF) from the original on 1 February 2012.
  91. ^ "Shifting cultivation". Survival International. Archived from the original on 29 August 2016. Retrieved 28 August 2016.
  92. ^ Waters, Tony (2007). The Persistence of Subsistence Agriculture: life beneath the level of the marketplace. Lexington Books.
  93. ^ "Chinese project offers a brighter farming future". Editorial. Nature. 555 (7695): 141. 7 March 2018. Bibcode:2018Natur.555R.141.. doi:10.1038/d41586-018-02742-3. PMID 29517037.
  94. ^ "Encyclopædia Britannica's definition of Intensive Agriculture". Archived from the original on 5 July 2006.
  95. ^ "BBC School fact sheet on intensive farming". Archived from the original on 3 May 2007.
  96. ^ "Wheat Stem Rust – UG99 (Race TTKSK)". FAO. Archived from the original on 7 January 2014. Retrieved 6 January 2014.
  97. ^ Sample, Ian (31 August 2007). "Global food crisis looms as climate change and population growth strip fertile land" Archived 29 April 2016 at the Wayback Machine, The Guardian (London).
  98. ^ "Africa may be able to feed only 25% of its population by 2025". Mongabay. 14 December 2006. Archived from the original on 27 November 2011. Retrieved 15 July 2016.
  99. ^ Scheierling, Susanne M. (1995). "Overcoming agricultural pollution of water: the challenge of integrating agricultural and environmental policies in the European Union, Volume 1". The World Bank. Archived from the original on 5 June 2013. Retrieved 15 April 2013.
  100. ^ "CAP Reform". European Commission. 2003. Archived from the original on 17 October 2010. Retrieved 15 April 2013.
  101. ^ Poincelot, Raymond P. (1986). "Organic Farming". Toward a More Sustainable Agriculture. pp. 14–32. doi:10.1007/978-1-4684-1506-3_2. ISBN 978-1-4684-1508-7.
  102. ^ "The cutting-edge technology that will change farming". Agweek. 9 November 2018. Archived from the original on 17 November 2018. Retrieved 23 November 2018.
  103. ^ Charles, Dan (3 November 2017). "Hydroponic Veggies Are Taking Over Organic, And A Move To Ban Them Fails". NPR. Archived from the original on 24 November 2018. Retrieved 24 November 2018.
  104. ^ Knapp, Samuel; van der Heijden, Marcel G. A. (7 September 2018). "A global meta-analysis of yield stability in organic and conservation agriculture". Nature Communications. 9 (1): 3632. Bibcode:2018NatCo...9.3632K. doi:10.1038/s41467-018-05956-1. ISSN 2041-1723. PMC 6128901. PMID 30194344.
  105. ^ GM Science Review First Report Archived 16 October 2013 at the Wayback Machine, Prepared by the UK GM Science Review panel (July 2003). Chairman David King, p. 9
  106. ^ a b "UNCTADstat – Table view". Archived from the original on 20 October 2017. Retrieved 26 November 2017.
  107. ^ "Agricultural Productivity in the United States". USDA Economic Research Service. 5 July 2012. Archived from the original on 1 February 2013. Retrieved 22 April 2013.
  108. ^ a b c World Food and Agriculture – Statistical Yearbook 2023. FAO. 2023. doi:10.4060/cc8166en. ISBN 978-92-5-138262-2. Archived from the original on 15 December 2023. Retrieved 13 December 2023 – via FAODocuments.
  109. ^ a b c The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable. Rome: Food and Agriculture Organization of the United Nations. 2022. doi:10.4060/cc0639en. hdl:10654/44801. ISBN 978-92-5-136499-4. S2CID 264474106. Archived from the original on 13 April 2023. Retrieved 3 February 2023.
  110. ^ In Brief to The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable. Rome: Food and Agriculture Organization of the United Nations. 2022. doi:10.4060/cc0640en. ISBN 978-92-5-136502-1. Archived from the original on 13 April 2023. Retrieved 6 February 2023.
  111. ^ "Food prices: smallholder farmers can be part of the solution". International Fund for Agricultural Development. Archived from the original on 5 May 2013. Retrieved 24 April 2013.
  112. ^ "World Bank. 2021. Employment in agriculture (% of total employment) (modeled ILO estimate)". The World Bank. Washington, DC. 2021. Archived from the original on 7 October 2019. Retrieved 12 May 2021.
  113. ^ Michaels, Guy; Rauch, Ferdinand; Redding, Stephen J. (2012). "Urbanization and Structural Transformation". The Quarterly Journal of Economics. 127 (2): 535–586. doi:10.1093/qje/qjs003. ISSN 0033-5533. JSTOR 23251993. Archived from the original on 3 February 2023. Retrieved 3 February 2023.
  114. ^ Gollin, Douglas; Parente, Stephen; Rogerson, Richard (2002). "The Role of Agriculture in Development". The American Economic Review. 92 (2): 160–164. doi:10.1257/000282802320189177. ISSN 0002-8282. JSTOR 3083394. Archived from the original on 3 February 2023. Retrieved 3 February 2023.
  115. ^ Lewis, W. Arthur (1954). "Economic Development with Unlimited Supplies of Labour". The Manchester School. 22 (2): 139–191. doi:10.1111/j.1467-9957.1954.tb00021.x. ISSN 1463-6786. Archived from the original on 3 February 2023. Retrieved 3 February 2023.
  116. ^ "FAOSTAT: Employment Indicators: Agriculture". FAO. Rome. 2022. Archived from the original on 14 November 2021. Retrieved 6 February 2022.
  117. ^ "Employment in agriculture (% of total employment) (modeled ILO estimate) | Data". data.worldbank.org. Archived from the original on 7 October 2019. Retrieved 14 March 2023.
  118. ^ Allen, Robert C. "Economic structure and agricultural productivity in Europe, 1300–1800" (PDF). European Review of Economic History. 3: 1–25. Archived from the original (PDF) on 27 October 2014.
  119. ^ "Labor Force – By Occupation". The World Factbook. Central Intelligence Agency. Archived from the original on 22 May 2014. Retrieved 4 May 2013.
  120. ^ a b c "Safety and health in agriculture". International Labour Organization. 21 March 2011. Archived from the original on 18 March 2018. Retrieved 1 April 2018.
  121. ^ "Services sector overtakes farming as world's biggest employer: ILO". The Financial Express. Associated Press. 26 January 2007. Archived from the original on 13 October 2013. Retrieved 24 April 2013.
  122. ^ In Brief: The State of Food and Agriculture 2018. Migration, agriculture and rural development. Rome: FAO. 2018. Archived from the original on 3 February 2023. Retrieved 6 February 2023.
  123. ^ Caruso, F.; Corrado, A. (2015). "Migrazioni e lavoro agricolo: un confronto tra Italia e Spagna in tempi di crisi". In M. Colucci & S. Gallo (ed.). Tempo di cambiare. Rapporto 2015 sulle migrazioni interne in Italia. Rome: Donizelli. pp. 58–77.
  124. ^ Kasimis, Charalambos (1 October 2005). "Migrants in the Rural Economies of Greece and Southern Europe". migrationpolicy.org. Archived from the original on 6 February 2023. Retrieved 6 February 2023.
  125. ^ Nori, M. (2017). The shades of green: Migrants' contribution to EU agriculture. Context, trends, opportunities, challenges. Florence: Migration Policy Centre. doi:10.2870/785454. hdl:1814/49004. ISBN 9789290845560. ISSN 2467-4540.
  126. ^ Fonseca, Maria Lucinda (November 2008). "New waves of immigration to small towns and rural areas in Portugal: Immigration to Rural Portugal". Population, Space and Place. 14 (6): 525–535. doi:10.1002/psp.514. Archived from the original on 6 February 2023. Retrieved 6 February 2023.
  127. ^ Preibisch, Kerry (2010). "Pick-Your-Own Labor: Migrant Workers and Flexibility in Canadian Agriculture". The International Migration Review. 44 (2): 404–441. doi:10.1111/j.1747-7379.2010.00811.x. ISSN 0197-9183. JSTOR 25740855. S2CID 145604068. Archived from the original on 6 February 2023. Retrieved 6 February 2023.
  128. ^ "Agriculture: How immigration plays a critical role". New American Economy. Archived from the original on 6 April 2023. Retrieved 6 February 2023.
  129. ^ a b c d The State of Food and Agriculture 2017. Leveraging food systems for inclusive rural transformation. Rome: FAO. 2017. ISBN 978-92-5-109873-8. Archived from the original on 14 March 2023. Retrieved 6 February 2023.
  130. ^ a b c d The status of women in agrifood systems - Overview. Rome: FAO. 2023. doi:10.4060/cc5060en. S2CID 258145984. Archived from the original on 16 February 2024. Retrieved 9 November 2023.
  131. ^ "NIOSH Workplace Safety & Health Topic: Agricultural Injuries". Centers for Disease Control and Prevention. Archived from the original on 28 October 2007. Retrieved 16 April 2013.
  132. ^ "NIOSH Pesticide Poisoning Monitoring Program Protects Farmworkers". Centers for Disease Control and Prevention. 2011. doi:10.26616/NIOSHPUB2012108. Archived from the original on 2 April 2013. Retrieved 15 April 2013.
  133. ^ a b "NIOSH Workplace Safety & Health Topic: Agriculture". Centers for Disease Control and Prevention. Archived from the original on 9 October 2007. Retrieved 16 April 2013.
  134. ^ a b Weichelt, Bryan; Gorucu, Serap (17 February 2018). "Supplemental surveillance: a review of 2015 and 2016 agricultural injury data from news reports on AgInjuryNews.org". Injury Prevention. 25 (3): injuryprev–2017–042671. doi:10.1136/injuryprev-2017-042671. PMID 29386372. S2CID 3371442. Archived from the original on 27 April 2018. Retrieved 18 April 2018.
  135. ^ The PLOS ONE staff (6 September 2018). "Correction: Towards a deeper understanding of parenting on farms: A qualitative study". PLOS ONE. 13 (9): e0203842. Bibcode:2018PLoSO..1303842.. doi:10.1371/journal.pone.0203842. ISSN 1932-6203. PMC 6126865. PMID 30188948.
  136. ^ "Agriculture: A hazardous work". International Labour Organization. 15 June 2009. Archived from the original on 3 March 2018. Retrieved 1 April 2018.
  137. ^ "CDC – NIOSH – NORA Agriculture, Forestry and Fishing Sector Council". NIOSH. 21 March 2018. Archived from the original on 18 June 2019. Retrieved 7 April 2018.
  138. ^ "CDC – NIOSH Program Portfolio : Agriculture, Forestry and Fishing : Program Description". NIOSH. 28 February 2018. Archived from the original on 8 April 2018. Retrieved 7 April 2018.
  139. ^ "Protecting health and safety of workers in agriculture, livestock farming, horticulture and forestry". European Agency for Safety and Health at Work. 17 August 2017. Archived from the original on 29 September 2018. Retrieved 10 April 2018.
  140. ^ Heiberger, Scott (3 July 2018). "The future of agricultural safety and health: North American Agricultural Safety Summit, February 2018, Scottsdale, Arizona". Journal of Agromedicine. 23 (3): 302–304. doi:10.1080/1059924X.2018.1485089. ISSN 1059-924X. PMID 30047853. S2CID 51721534.
  141. ^ "Value of agricultural production". Our World in Data. Archived from the original on 8 March 2020. Retrieved 6 March 2020.
  142. ^ "Analysis of farming systems". Food and Agriculture Organization. Archived from the original on 6 August 2013. Retrieved 22 May 2013.
  143. ^ a b "Agricultural Production Systems". pp. 283–317 in Acquaah.
  144. ^ a b c d e f g "Farming Systems: Development, Productivity, and Sustainability", pp. 25–57 in Chrispeels
  145. ^ a b c d "Food and Agriculture Organization of the United Nations (FAOSTAT)". Archived from the original on 18 January 2013. Retrieved 2 February 2013.
  146. ^ "Profiles of 15 of the world's major plant and animal fibres". FAO. 2009. Archived from the original on 3 December 2020. Retrieved 26 March 2018.
  147. ^ Clutton-Brock, Juliet (1999). A Natural History of Domesticated Mammals. Cambridge University Press. pp. 1–2. ISBN 978-0-521-63495-3. Archived from the original on 13 April 2023. Retrieved 10 February 2019.
  148. ^ Falvey, John Lindsay (1985). Introduction to Working Animals. Melbourne, Australia: MPW Australia. ISBN 978-1-86252-992-2.
  149. ^ a b c Sere, C.; Steinfeld, H.; Groeneweld, J. (1995). "Description of Systems in World Livestock Systems – Current status issues and trends". U.N. Food and Agriculture Organization. Archived from the original on 26 October 2012. Retrieved 8 September 2013.
  150. ^ a b Thornton, Philip K. (27 September 2010). "Livestock production: recent trends, future prospects". Philosophical Transactions of the Royal Society B. 365 (1554): 2853–2867. doi:10.1098/rstb.2010.0134. PMC 2935116. PMID 20713389.
  151. ^ Stier, Ken (19 September 2007). "Fish Farming's Growing Dangers". Time. Archived from the original on 7 September 2013.
  152. ^ Ajmone-Marsan, P. (May 2010). "A global view of livestock biodiversity and conservation – Globaldiv". Animal Genetics. 41 (supplement S1): 1–5. doi:10.1111/j.1365-2052.2010.02036.x. PMID 20500752. Archived from the original on 3 August 2017.
  153. ^ "Growth Promoting Hormones Pose Health Risk to Consumers, Confirms EU Scientific Committee" (PDF). European Union. 23 April 2002. Archived (PDF) from the original on 2 May 2013. Retrieved 6 April 2013.
  154. ^ a b Brady, N. C.; Weil, R. R. (2002). "Practical Nutrient Management" pp. 472–515 in Elements of the Nature and Properties of Soils. Pearson Prentice Hall, Upper Saddle River, NJ. ISBN 978-0135051955
  155. ^ "Land Preparation and Farm Energy", pp. 318–338 in Acquaah
  156. ^ "Pesticide Use in U.S. Crop Production", pp. 240–282 in Acquaah
  157. ^ "Soil and Land", pp. 165–210 in Acquaah
  158. ^ "Nutrition from the Soil", pp. 187–218 in Chrispeels
  159. ^ "Plants and Soil Water", pp. 211–239 in Acquaah
  160. ^ a b c d e f g h i j The State of Food and Agriculture 2022. Leveraging agricultural automation for transforming agrifood systems. Rome: FAO. 2022. doi:10.4060/cb9479en. ISBN 978-92-5-136043-9. Archived from the original on 13 April 2023. Retrieved 6 February 2023.
  161. ^ Pimentel, D.; Berger, D.; Filberto, D.; Newton, M. (2004). "Water Resources: Agricultural and Environmental Issues". BioScience. 54 (10): 909–918. doi:10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2.
  162. ^ a b c d The State of Food and Agriculture 2020. Overcoming water challenges in agriculture. Rome: FAO. 2020. doi:10.4060/cb1447en. ISBN 978-92-5-133441-6. S2CID 241788672. Archived from the original on 13 April 2023. Retrieved 6 February 2023.
  163. ^ Rosegrant, Mark W.; Koo, Jawoo; Cenacchi, Nicola; Ringler, Claudia; Robertson, Richard D.; Fisher, Myles; Cox, Cindy M.; Garrett, Karen; Perez, Nicostrato D.; Sabbagh, Pascale (2014). Food Security in a World of Natural Resource Scarcity. International Food Policy Research Institute. doi:10.2499/9780896298477. Archived from the original on 5 March 2014.
  164. ^ Tacconi, L. (2012). "Redefining payments for environmental services". Ecological Economics. 73 (1): 29–36. Bibcode:2012EcoEc..73...29T. doi:10.1016/j.ecolecon.2011.09.028.
  165. ^ Gan, H.; Lee, W. S. (1 January 2018). "Development of a Navigation System for a Smart Farm". IFAC-PapersOnLine. 6th IFAC Conference on Bio-Robotics BIOROBOTICS 2018. 51 (17): 1–4. doi:10.1016/j.ifacol.2018.08.051. ISSN 2405-8963.
  166. ^ Lowenberg-DeBoer, James; Huang, Iona Yuelu; Grigoriadis, Vasileios; Blackmore, Simon (1 April 2020). "Economics of robots and automation in field crop production". Precision Agriculture. 21 (2): 278–299. doi:10.1007/s11119-019-09667-5. ISSN 1573-1618. S2CID 254932536.
  167. ^ a b c d In Brief to The State of Food and Agriculture 2022. Leveraging automation in agriculture for transforming agrifood systems. Rome: FAO. 2022. doi:10.4060/cc2459en. ISBN 978-92-5-137005-6. Archived from the original on 13 April 2023. Retrieved 6 February 2023.
  168. ^ a b c Santos Valle, S.; Kienzle, J. (2020). Agriculture 4.0 – Agricultural robotics and automated equipment for sustainable crop production. FAO. Archived from the original on 10 February 2023. Retrieved 6 February 2023.
  169. ^ "FAOSTAT: Discontinued archives and data series: Machinery". Food and Agriculture Organization. Archived from the original on 14 November 2021. Retrieved 1 December 2021.
  170. ^ Daum, Thomas; Birner, Regina (1 September 2020). "Agricultural mechanization in Africa: Myths, realities and an emerging research agenda". Global Food Security. 26: 100393. Bibcode:2020GlFS...2600393D. doi:10.1016/j.gfs.2020.100393. ISSN 2211-9124. S2CID 225280050.
  171. ^ Rodenburg, Jack (2017). "Robotic milking: Technology, farm design, and effects on work flow". Journal of Dairy Science. 100 (9): 7729–7738. doi:10.3168/jds.2016-11715. ISSN 0022-0302. PMID 28711263. S2CID 11934286. Archived from the original on 13 April 2023.
  172. ^ Lowenberg-DeBoer, J. (2022). Economics of adoption for digital automated technologies in agriculture. Background paper for The State of Food and Agriculture 2022. Rome: FAO. doi:10.4060/cc2624en. ISBN 978-92-5-137080-3.
  173. ^ a b c Enabling inclusive agricultural automation. Rome: FAO. 2022. doi:10.4060/cc2688en. ISBN 978-92-5-137099-5.
  174. ^ Milius, Susan (13 December 2017). "Worries grow that climate change will quietly steal nutrients from major food crops". Science News. Archived from the original on 23 April 2019. Retrieved 21 January 2018.
  175. ^ Hoffmann, U., Section B: Agriculture – a key driver and a major victim of global warming, in: Lead Article, in: Chapter 1, in Hoffmann, U., ed. (2013). Trade and Environment Review 2013: Wake up before it is too late: Make agriculture truly sustainable now for food security in a changing climate. Geneva, Switzerland: United Nations Conference on Trade and Development (UNCTAD). pp. 3, 5. Archived from the original on 28 November 2014.
  176. ^ Porter, J. R., et al.., Executive summary, in: Chapter 7: Food security and food production systems Archived 5 November 2014 at the Wayback Machine(archived ), in IPCC AR5 WG2 A (2014). Field, C. B.; et al. (eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II (WG2) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press. pp. 488–489. Archived from the original on 16 April 2014. Retrieved 26 March 2018.{{cite book}}: CS1 maint: numeric names: authors list (link)
  177. ^ a b c d "Climate Change 2022: Impacts, Adaptation and Vulnerability". IPCC. Archived from the original on 28 February 2022. Retrieved 14 March 2023.
  178. ^ Paragraph 4, in: Summary and Recommendations, in: HLPE (June 2012). Food security and climate change. A report by the High Level Panel of Experts (HLPE) on Food Security and Nutrition of the Committee on World Food Security. Rome, Italy: Food and Agriculture Organization of the United Nations. p. 12. Archived from the original on 12 December 2014.
  179. ^ "History of Plant Breeding". Colorado State University. 29 January 2004. Archived from the original on 21 January 2013. Retrieved 11 May 2013.
  180. ^ Stadler, L. J.; Sprague, G.F. (15 October 1936). "Genetic Effects of Ultra-Violet Radiation in Maize: I. Unfiltered Radiation" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 22 (10): 572–578. Bibcode:1936PNAS...22..572S. doi:10.1073/pnas.22.10.572. PMC 1076819. PMID 16588111. Archived (PDF) from the original on 24 October 2007. Retrieved 11 October 2007.
  181. ^ Berg, Paul; Singer, Maxine (15 August 2003). George Beadle: An Uncommon Farmer. The Emergence of Genetics in the 20th century. Cold Springs Harbor Laboratory Press. ISBN 978-0-87969-688-7.
  182. ^ Ruttan, Vernon W. (December 1999). "Biotechnology and Agriculture: A Skeptical Perspective" (PDF). AgBioForum. 2 (1): 54–60. Archived (PDF) from the original on 21 May 2013.
  183. ^ Cassman, K. (5 December 1998). "Ecological intensification of cereal production systems: The Challenge of increasing crop yield potential and precision agriculture". Proceedings of a National Academy of Sciences Colloquium, Irvine, California. Archived from the original on 24 October 2007. Retrieved 11 October 2007.
  184. ^ Conversion note: 1 bushel of wheat=60 pounds (lb) ≈ 27.215 kg. 1 bushel of maize=56 pounds ≈ 25.401 kg
  185. ^ a b "World Intellectual Property Report 2024 - 3 The importance of local capabilities in AgTech specialization". World Intellectual Property Report 2024. Retrieved 9 September 2024.
  186. ^ Griliches, Zvi (1957). "Hybrid Corn: An Exploration in the Economics of Technological Change". Econometrica. 25 (4): 501–522. doi:10.2307/1905380. ISSN 0012-9682. JSTOR 1905380.
  187. ^ "20 Questions on Genetically Modified Foods". World Health Organization. Archived from the original on 27 March 2013. Retrieved 16 April 2013.
  188. ^ Whiteside, Stephanie (28 November 2012). "Peru bans genetically modified foods as US lags". Current TV. Archived from the original on 24 March 2013. Retrieved 7 May 2013.
  189. ^ Shiva, Vandana (2005). Earth Democracy: Justice, Sustainability, and Peace. Cambridge, MA: South End Press.
  190. ^ Kathrine Hauge Madsen; Jens Carl Streibig. "Benefits and risks of the use of herbicide-resistant crops". Weed Management for Developing Countries. FAO. Archived from the original on 4 June 2013. Retrieved 4 May 2013.
  191. ^ "Farmers Guide to GMOs" (PDF). Rural Advancement Foundation International. 11 January 2013. Archived (PDF) from the original on 1 May 2012. Retrieved 16 April 2013.
  192. ^ Hindo, Brian (13 February 2008). "Report Raises Alarm over 'Super-weeds'". Bloomberg BusinessWeek. Archived from the original on 26 December 2016.
  193. ^ Ozturk; et al. (2008). "Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots". New Phytologist. 177 (4): 899–906. doi:10.1111/j.1469-8137.2007.02340.x. PMID 18179601. Archived from the original on 13 January 2017.
  194. ^ "Insect-resistant Crops Through Genetic Engineering". University of Illinois. Archived from the original on 21 January 2013. Retrieved 4 May 2013.
  195. ^ Kimbrell, A. (2002). Fatal Harvest: The Tragedy of Industrial Agriculture. Washington: Island Press.
  196. ^ "Making Peace with Nature: A scientific blueprint to tackle the climate, biodiversity and pollution emergencies". United Nations Environment Programme. 2021. Archived from the original on 23 March 2021. Retrieved 9 June 2021.
  197. ^ International Resource Panel (2010). "Priority products and materials: assessing the environmental impacts of consumption and production". United Nations Environment Programme. Archived from the original on 24 December 2012. Retrieved 7 May 2013.
  198. ^ Frouz, Jan; Frouzová, Jaroslava (2022). Applied Ecology. doi:10.1007/978-3-030-83225-4. ISBN 978-3-030-83224-7. S2CID 245009867. Archived from the original on 29 January 2022. Retrieved 19 December 2021.
  199. ^ a b "Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication". UNEP. 2011. Archived from the original on 10 May 2020. Retrieved 9 June 2021.
  200. ^ a b Pretty, J.; et al. (2000). "An assessment of the total external costs of UK agriculture". Agricultural Systems. 65 (2): 113–136. Bibcode:2000AgSys..65..113P. doi:10.1016/S0308-521X(00)00031-7. Archived from the original on 13 January 2017.
  201. ^ a b Tegtmeier, E. M.; Duffy, M. (2005). "External Costs of Agricultural Production in the United States" (PDF). The Earthscan Reader in Sustainable Agriculture. Archived (PDF) from the original on 5 February 2009.
  202. ^ The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction, In brief. Food and Agriculture Organization. 2019. p. 12. Archived from the original on 29 April 2021. Retrieved 4 May 2021.
  203. ^ "French firm breeds plants that resist climate change". European Investment Bank. Archived from the original on 2 February 2023. Retrieved 25 January 2023.
  204. ^ "New virulent disease threatens wheat crops in Europe and North Africa – researchers". Reuters. 3 February 2017. Archived from the original on 25 January 2023. Retrieved 25 January 2023.
  205. ^ "Livestock a major threat to environment". UN Food and Agriculture Organization. 29 November 2006. Archived from the original on 28 March 2008. Retrieved 24 April 2013.
  206. ^ Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. (2006). "Livestock's Long Shadow – Environmental issues and options" (PDF). Rome: U.N. Food and Agriculture Organization. Archived from the original (PDF) on 25 June 2008. Retrieved 5 December 2008.
  207. ^ Archer, Steven R.; Andersen, Erik M.; Predick, Katharine I.; Schwinning, Susanne; Steidl, Robert J.; Woods, Steven R. (2017), Briske, David D. (ed.), "Woody Plant Encroachment: Causes and Consequences", Rangeland Systems, Cham: Springer International Publishing, pp. 25–84, doi:10.1007/978-3-319-46709-2_2, ISBN 978-3-319-46707-8
  208. ^ Vitousek, P. M.; Mooney, H. A.; Lubchenco, J.; Melillo, J. M. (1997). "Human Domination of Earth's Ecosystems". Science. 277 (5325): 494–499. CiteSeerX 10.1.1.318.6529. doi:10.1126/science.277.5325.494. S2CID 8610995.
  209. ^ Bai, Z.G.; Dent, D.L.; Olsson, L. & Schaepman, M.E. (November 2008). "Global assessment of land degradation and improvement: 1. identification by remote sensing" (PDF). Food and Agriculture Organization/ISRIC. Archived from the original (PDF) on 13 December 2013. Retrieved 24 May 2013.
  210. ^ Carpenter, S. R.; Caraco, N. F.; Correll, D. L.; Howarth, R. W.; Sharpley, A. N.; Smith, V. H. (1998). "Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen". Ecological Applications. 8 (3): 559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2. hdl:1808/16724.
  211. ^ Hautier, Y.; Niklaus, P. A.; Hector, A. (2009). "Competition for Light Causes Plant Biodiversity Loss After Eutrophication" (PDF). Science (Submitted manuscript). 324 (5927): 636–638. Bibcode:2009Sci...324..636H. doi:10.1126/science.1169640. PMID 19407202. S2CID 21091204. Archived (PDF) from the original on 2 November 2018. Retrieved 3 November 2018.
  212. ^ Molden, D. (ed.). "Findings of the Comprehensive Assessment of Water Management in Agriculture" (PDF). Annual Report 2006/2007. International Water Management Institute. Archived (PDF) from the original on 7 January 2014. Retrieved 6 January 2014.
  213. ^ European Investment Bank; Arthus-Bertrand, Yann (2019). On Water. Publications Office of the European Union. doi:10.2867/509830. ISBN 978-9286143199. Archived from the original on 29 November 2020. Retrieved 7 December 2020.
  214. ^ Li, Sophia (13 August 2012). "Stressed Aquifers Around the Globe". The New York Times. Archived from the original on 2 April 2013. Retrieved 7 May 2013.
  215. ^ "Water Use in Agriculture". Food and Agriculture Organization. November 2005. Archived from the original on 15 June 2013. Retrieved 7 May 2013.
  216. ^ "Water Management: Towards 2030". Food and Agriculture Organization. March 2003. Archived from the original on 10 May 2013. Retrieved 7 May 2013.
  217. ^ Pimentel, D.; Culliney, T. W.; Bashore, T. (1996). "Public health risks associated with pesticides and natural toxins in foods". Radcliffe's IPM World Textbook. Archived from the original on 18 February 1999. Retrieved 7 May 2013.
  218. ^ Our planet, our health: Report of the WHO commission on health and environment. Geneva: World Health Organization (1992).
  219. ^ a b "Strategies for Pest Control", pp. 355–383 in Chrispeels
  220. ^ Avery, D.T. (2000). Saving the Planet with Pesticides and Plastic: The Environmental Triumph of High-Yield Farming. Indianapolis: Hudson Institute. ISBN 978-1558130692.
  221. ^ "Center for Global Food Issues". cgfi.org. Archived from the original on 16 July 2016. Retrieved 14 July 2016.
  222. ^ Lappe, F. M.; Collins, J.; Rosset, P. (1998). "Myth 4: Food vs. Our Environment" (PDF). World Hunger, Twelve Myths. New York: Grove Press. pp. 42–57. ISBN 978-0802135919. Archived from the original (PDF) on 4 March 2021 – via Oregon State University.
  223. ^ Cook, Samantha M.; Khan, Zeyaur R.; Pickett, John A. (2007). "The use of push-pull strategies in integrated pest management". Annual Review of Entomology. 52: 375–400. doi:10.1146/annurev.ento.52.110405.091407. PMID 16968206.
  224. ^ Section 4.2: Agriculture's current contribution to greenhouse gas emissions, in: HLPE (June 2012). Food security and climate change. A report by the High Level Panel of Experts (HLPE) on Food Security and Nutrition of the Committee on World Food Security. Rome, Italy: Food and Agriculture Organization of the United Nations. pp. 67–69. Archived from the original on 12 December 2014.
  225. ^ Nabuurs, G-J.; Mrabet, R.; Abu Hatab, A.; Bustamante, M.; et al. "Chapter 7: Agriculture, Forestry and Other Land Uses (AFOLU)" (PDF). Climate Change 2022: Mitigation of Climate Change. p. 750. doi:10.1017/9781009157926.009. Archived (PDF) from the original on 26 December 2022..
  226. ^ FAO (2020). Emissions due to agriculture. Global, regional and country trends 2000–2018 (PDF) (Report). FAOSTAT Analytical Brief Series. Vol. 18. Rome. p. 2. ISSN 2709-0078. Archived (PDF) from the original on 17 June 2021.
  227. ^ "How livestock farming affects the environment". www.downtoearth.org.in. Archived from the original on 30 January 2023. Retrieved 10 February 2022.
  228. ^ a b c Xu, Xiaoming; Sharma, Prateek; Shu, Shijie; Lin, Tzu-Shun; Ciais, Philippe; Tubiello, Francesco N.; Smith, Pete; Campbell, Nelson; Jain, Atul K. (2021). "Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods". Nature Food. 2 (9): 724–732. doi:10.1038/s43016-021-00358-x. hdl:2164/18207. ISSN 2662-1355. PMID 37117472. S2CID 240562878. Archived from the original on 3 April 2023. Retrieved 14 March 2023.
  229. ^ Boelee, E., ed. (2011). "Ecosystems for water and food security". IWMI/UNEP. Archived from the original on 23 May 2013. Retrieved 24 May 2013.
  230. ^ Molden, D. "Opinion: The Water Deficit" (PDF). The Scientist. Archived (PDF) from the original on 13 January 2012. Retrieved 23 August 2011.
  231. ^ Safefood Consulting, Inc. (2005). "Benefits of Crop Protection Technologies on Canadian Food Production, Nutrition, Economy and the Environment". CropLife International. Archived from the original on 6 July 2013. Retrieved 24 May 2013.
  232. ^ Trewavas, Anthony (2004). "A critical assessment of organic farming-and-food assertions with particular respect to the UK and the potential environmental benefits of no-till agriculture". Crop Protection. 23 (9): 757–781. Bibcode:2004CrPro..23..757T. doi:10.1016/j.cropro.2004.01.009.
  233. ^ Griscom, Bronson W.; Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter (2017). "Natural climate solutions". Proceedings of the National Academy of Sciences. 114 (44): 11645–11650. Bibcode:2017PNAS..11411645G. doi:10.1073/pnas.1710465114. ISSN 0027-8424. PMC 5676916. PMID 29078344.
  234. ^ National Academies Of Sciences, Engineering (2019). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. National Academies of Sciences, Engineering, and Medicine. pp. 117, 125, 135. doi:10.17226/25259. ISBN 978-0-309-48452-7. PMID 31120708. S2CID 134196575.
  235. ^ National Academies of Sciences, Engineering, and Medicine (2019). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. National Academies of Sciences, Engineering, and Medicine. p. 97. doi:10.17226/25259. ISBN 978-0-309-48452-7. PMID 31120708. S2CID 134196575. Archived from the original on 22 November 2021. Retrieved 21 February 2020.{{cite book}}: CS1 maint: multiple names: authors list (link)
  236. ^ Ecological Modelling. Archived from the original on 23 January 2018.
  237. ^ "World oil supplies are set to run out faster than expected, warn scientists". The Independent. 14 June 2007. Archived from the original on 21 October 2010. Retrieved 14 July 2016.
  238. ^ Herdt, Robert W. (30 May 1997). "The Future of the Green Revolution: Implications for International Grain Markets" (PDF). The Rockefeller Foundation. p. 2. Archived (PDF) from the original on 19 October 2012. Retrieved 16 April 2013.
  239. ^ a b c d Schnepf, Randy (19 November 2004). "Energy use in Agriculture: Background and Issues" (PDF). CRS Report for Congress. Congressional Research Service. Archived (PDF) from the original on 27 September 2013. Retrieved 26 September 2013.
  240. ^ Woods, Jeremy; Williams, Adrian; Hughes, John K.; Black, Mairi; Murphy, Richard (August 2010). "Energy and the food system". Philosophical Transactions of the Royal Society. 365 (1554): 2991–3006. doi:10.1098/rstb.2010.0172. PMC 2935130. PMID 20713398.
  241. ^ Canning, Patrick; Charles, Ainsley; Huang, Sonya; Polenske, Karen R.; Waters, Arnold (2010). "Energy Use in the U.S. Food System". USDA Economic Research Service Report No. ERR-94. United States Department of Agriculture. Archived from the original on 18 September 2010.
  242. ^ Heller, Martin; Keoleian, Gregory (2000). "Life Cycle-Based Sustainability Indicators for Assessment of the U.S. Food System" (PDF). University of Michigan Center for Sustainable Food Systems. Archived from the original (PDF) on 14 March 2016. Retrieved 17 March 2016.
  243. ^ a b c UN Environment (21 October 2021). "Drowning in Plastics – Marine Litter and Plastic Waste Vital Graphics". UNEP – UN Environment Programme. Archived from the original on 21 March 2022. Retrieved 23 March 2022.
  244. ^ "The Anti-Corn Law League". Liberal History. Archived from the original on 26 March 2018. Retrieved 26 March 2018.
  245. ^ "Agricultural Economics". University of Idaho. Archived from the original on 1 April 2013. Retrieved 16 April 2013.
  246. ^ Runge, C. Ford (June 2006). "Agricultural Economics: A Brief Intellectual History" (PDF). Center for International Food and Agriculture Policy. p. 4. Archived (PDF) from the original on 21 October 2013. Retrieved 16 September 2013.
  247. ^ Conrad, David E. "Tenant Farming and Sharecropping". Encyclopedia of Oklahoma History and Culture. Oklahoma Historical Society. Archived from the original on 27 May 2013. Retrieved 16 September 2013.
  248. ^ Stokstad, Marilyn (2005). Medieval Castles. Greenwood Publishing Group. p. 43. ISBN 978-0-313-32525-0. Archived from the original on 16 May 2022. Retrieved 17 March 2016.
  249. ^ Sexton, R. J. (2000). "Industrialization and Consolidation in the US Food Sector: Implications for Competition and Welfare". American Journal of Agricultural Economics. 82 (5): 1087–1104. doi:10.1111/0002-9092.00106.
  250. ^ a b Lloyd, Peter J.; Croser, Johanna L.; Anderson, Kym (March 2009). "How Do Agricultural Policy Restrictions to Global Trade and Welfare Differ across Commodities?" (PDF). Policy Research Working Paper #4864. The World Bank. pp. 2–3. Archived (PDF) from the original on 5 June 2013. Retrieved 16 April 2013.
  251. ^ Anderson, Kym; Valenzuela, Ernesto (April 2006). "Do Global Trade Distortions Still Harm Developing Country Farmers?" (PDF). World Bank Policy Research Working Paper 3901. World Bank. pp. 1–2. Archived (PDF) from the original on 5 June 2013. Retrieved 16 April 2013.
  252. ^ Kinnock, Glenys (24 May 2011). "America's $24bn subsidy damages developing world cotton farmers". The Guardian. Archived from the original on 6 September 2013. Retrieved 16 April 2013.
  253. ^ "Agriculture's Bounty" (PDF). May 2013. Archived (PDF) from the original on 26 August 2013. Retrieved 19 August 2013.
  254. ^ Bosso, Thelma (2015). Agricultural Science. Callisto Reference. ISBN 978-1-63239-058-5.
  255. ^ Boucher, Jude (2018). Agricultural Science and Management. Callisto Reference. ISBN 978-1-63239-965-6.
  256. ^ John Armstrong, Jesse Buel. A Treatise on Agriculture, The Present Condition of the Art Abroad and at Home, and the Theory and Practice of Husbandry. To which is Added, a Dissertation on the Kitchen and Garden. 1840. p. 45.
  257. ^ "The Long Term Experiments". Rothamsted Research. Archived from the original on 27 March 2018. Retrieved 26 March 2018.
  258. ^ Silvertown, Jonathan; Poulton, Paul; Johnston, Edward; Edwards, Grant; Heard, Matthew; Biss, Pamela M. (2006). "The Park Grass Experiment 1856–2006: its contribution to ecology". Journal of Ecology. 94 (4): 801–814. Bibcode:2006JEcol..94..801S. doi:10.1111/j.1365-2745.2006.01145.x.
  259. ^ Hillison, J. (1996). The Origins of Agriscience: Or Where Did All That Scientific Agriculture Come From? Archived 2 October 2008 at the Wayback Machine. Journal of Agricultural Education.
  260. ^ Coulson, J. R.; Vail, P. V.; Dix M. E.; Nordlund, D. A.; Kauffman, W. C.; Eds. 2000. 110 years of biological control research and development in the United States Department of Agriculture: 1883–1993. U.S. Department of Agriculture, Agricultural Research Service. pp. 3–11
  261. ^ "History and Development of Biological Control (notes)" (PDF). University of California Berkeley. Archived from the original (PDF) on 24 November 2015. Retrieved 10 April 2017.
  262. ^ Reardon, Richard C. "Biological Control of The Gypsy Moth: An Overview". Southern Appalachian Biological Control Initiative Workshop. Archived from the original on 5 September 2016. Retrieved 10 April 2017.
  263. ^ "Meat Atlas". Heinrich Boell Foundation, Friends of the Earth Europe. 2014. Archived from the original on 22 April 2018. Retrieved 17 April 2018.
  264. ^ Hogan, Lindsay; Morris, Paul (October 2010). "Agricultural and food policy choices in Australia" (PDF). Sustainable Agriculture and Food Policy in the 21st Century: Challenges and Solutions: 13. Archived (PDF) from the original on 15 December 2019. Retrieved 22 April 2013.
  265. ^ "Agriculture: Not Just Farming". European Union. 16 June 2016. Archived from the original on 23 May 2019. Retrieved 8 May 2018.
  266. ^ a b A multi-billion-dollar opportunity – Repurposing agricultural support to transform food systems. FAO, UNDP, and UNEP. 2021. doi:10.4060/cb6562en. ISBN 978-92-5-134917-5. Archived from the original on 13 April 2023. Retrieved 14 March 2023.
  267. ^ Ikerd, John (2010). "Corporatization of Agricultural Policy". Small Farm Today Magazine. Archived from the original on 7 August 2016.
  268. ^ Jowit, Juliette (22 September 2010). "Corporate Lobbying Is Blocking Food Reforms, Senior UN Official Warns: Farming Summit Told of Delaying Tactics by Large Agribusiness and Food Producers on Decisions that Would Improve Human Health and the Environment". The Guardian. Archived from the original on 5 May 2019. Retrieved 8 May 2018.

Cited sources

 This article incorporates text from a free content work. Licensed under CC BY-SA 3.0 IGO (license statement/permission). Text taken from Drowning in Plastics – Marine Litter and Plastic Waste Vital Graphics​, United Nations Environment Programme.

 This article incorporates text from a free content work (license statement/permission). Text taken from In Brief: The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction​, FAO, FAO.

 This article incorporates text from a free content work (license statement/permission). Text taken from In Brief to The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable​, FAO.

 This article incorporates text from a free content work (license statement/permission). Text taken from In Brief: The State of Food and Agriculture 2018. Migration, agriculture and rural development​, FAO, FAO.

 This article incorporates text from a free content work (license statement/permission). Text taken from In Brief to The State of Food and Agriculture 2022. Leveraging automation in agriculture for transforming agrifood systems​, FAO, FAO.

 This article incorporates text from a free content work (license statement/permission). Text taken from Enabling inclusive agricultural automation​, FAO, FAO.

 This article incorporates text from a free content work. Licensed under CC BY-SA 3.0 (license statement/permission). Text taken from The status of women in agrifood systems – Overview​, FAO, FAO.

 This article incorporates text from a free content work. Licensed under CC BY-SA IGO 3.0 (license statement/permission). Text taken from World Food and Agriculture – Statistical Yearbook 2023​, FAO, FAO.

 This article incorporates text from a free content work. Licensed under CC BY 4.0 (license statement/permission). Text taken from World Intellectual Property Report 2024 - The importance of local capabilities in AgTech specialization​, WIPO, WIPO.

External links